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- We are given the initial bounding box (BB) of a target.
- Estimate its BB in later frames of a video (“track the target”).

- Important component of many Computer Vision pipelines
(simpler/faster than detection; ensures temporal consistency).

- Successfully tracked frames yield more information on target appearance.
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- Linear classifier with
weights w :
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- Linear classifier with
weights w :

y=wrlx
- Evaluate it at subwindows x; :

i T
Yi = W X

- Concatenate y; into a vector y.
- Equivalent to crosslcorrelation (or correlation for short)

y=x®w

- Note: Convolution is related: it is the same as crosslcorrelation,
but with the flipped image of w ( ¥ = | ).
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Crosslcorrelation is equivalent to an
elementlwise product in Fourier domain:

y=x®w, & §=R"XW

(likewise for X and w).

where - : .
X 1s elementlwise product.

. 1s complexlconjugate (i.e. negate imaginary part).

Note that crosslcorrelation, and the DFT, are cyclic
(the window wraps at the image edges).

y = F(y) Is the Discrete Fourier Transform (DFT) of y.
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Crosslcorrelation is equivalent to an
elementlwise product in Fourier domain:

y=x®w, & §=R"XW

In practice: d Fles[ + X
P S
x | Y slF1l y
w—> [F 1
W

Can be orders of magnitude faster:
For n x n images, crossicorrelation is O(n*).

Fast Fourier Transform (and its inverse) are O(n?logn).
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- The evaluation of any linear
classifier can be accelerated —
with the Convolution Theorem.

(Not just for tracking.)

- What about training?

- It turns out that Signal Processing studied this problem for decades,
almost separately from mainstream Computer Vision!
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High values

Unspecified

Low values

Intuition of training objective:
- Crosslcorrelation of classifier w and a training image x should have:
+ A high peak near the true location of the target.

- Low values elsewhere (to minimize false positives).
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- Minimum Average Correlation Energy (MACE) filters (1980°s)

- Bring the average correlation output towards O:  XOw

min ||[x ® w||?
W

- While keeping the peak value fixed:

subjectto: wix =1

- The goal is to produce a sharp peak at the target location.
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- Minimum Average Correlation Energy (MACE) filters (1980°s)

- The solution is:

X®w

X

R* X %

where division and product (x) are elementiwise.
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Minimum Average Correlation Energy (MACE) filters (1980’s)

The solution is:

X

R* X R

where division and product (x) are elementlwise.

X* X X Is called the spectrum and is reallvalued.

Dividing by the spectrum is a common feature of
many filters; it brings the autolcorrelation to O.

Sharp peak = good localization! Are we done?

X®w
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The MACE filter suffers from 2 issues:

Hard constraints easily lead to overfitting.

UMACE (“Unconstrained MACE”) attempts to solve this by instead
maximizing the average classifier output on positive samples.

Unfortunately, it still suffers from the second problem...
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The MACE filter suffers from 2 issues:

Enforcing a sharp peak is also a too strong condition; overfits.

This led to the development of GaussianIMACE / MSEIMACE,
which encourages the peak to follow a nice 2D Gaussian shape:

VA 1.0

min Ix ® w — gl|?, g =
0.0

subjectto: wix =1

In the original papers (1990’s), the minimization was st///
subject to the MACE hard constraint: w/x =1 .
(It later turned out to be unnecessary!)
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Training image: x = ﬁ

Naive filter
(W =x)
Classifier P 3
(w) ¥
Output
(W * x)

)

Very broad peak is hard to localize
(especially with clutter).

Stateloflthelart classifiers (e.g. SVM)
show same behavior!
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0,0
Naive filter Sharp peak
(W =x) (UMACE)
NG
Classifi - 24
agv&)ler : i jﬁk}?’a— A very sharp peak is
. =22 obtained by emphasizing

small image details

(like the fish’s scales here).
Output

(W * X)

Unfortunately, this classifier generalizes poorly:
If the details are not exactly the same, the output is O.
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Naive filter Sharp peak
(w =Xx) (UMACE)
Classif G
assifier
(w) | J’" ﬂf?’
Output
(W * x)

A Gaussian peak is a good compromise.
Tiny detalls are ignored.

Instead, the classifier focuses on larger, more robust structures. —

w 1.0

_

Gaussian peak
(GMACE)
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In their CVPR 2010 paper, David Bolme and colleagues
brought these techniques back to the spotlight.

They presented a tracker that:

Processed videos at over
600 frameslperlsecond ()

Was very simple to implement

No features.

Only FFT and elementlwise
operations on raw pixels.

Despite this fact, it performed similarly to
the most sophisticated trackers of the time.

kR
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Min. OUEPUESUIMRORSYRELRLOESI (MOSSE

How did they do it?

- They focused on just the “Gaussian peak” objective (no constraints):

1.0
%Mk@w—mﬂ g = H
0.0
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How did they do it?

They focused on just the “Gaussian peak” objective (no constraints):

1.0
min Ix ®w — g%, g =
0.0

Found the following solution using the Convolution Theorem:

W =

(A = 10~* is added to prevent divisions by 0)

No expensive matrix operations! = = Only FFT and elementlwise.
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Practical aspects:

Cosine (or sine) window

P
e . _"""--....______‘
X' .. = (X, — 0.5) sin(mr/n) sin(mc/n) where X is n X n

Smoothly interpolates image with a constant value at the edges.

The filter sees an image that is “cyclic”:
no discontinuity between edges (e.g. top and bottom).

Bonus: gives more importance to the target center.
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Practical aspects:

Simple update

wt — (1 i H)Wt—1 + 77‘/"\’new

Train a MOSSE filter Wyey
using the new image X.

Update previous solution w;_,
with W, by linear interpolation.

n Is the learning rate (higher — faster adaptation).

This gives the tracker some memory.

A variant is to update the numerator and denominator separately.
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Practical aspects: Scale

Scale adaptation

Extract patches from BB’s with 3 scales, resize them to the same size.

Run detection, use BB with the highest detection score.

Can also be adapted for rotation, and other transformations.
29



Why does the MOSSE filter work so well in practice?

— We need tools to connect correlation filters with machine learning.

Consider the original minimization: min |[|x ® w — g||?
W
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Why does the MOSSE filter work so well in practice?

— We need tools to connect correlation filters with machine learning.

Consider the original minimization:

We can replace the correlation
with a special matrix C(x):

C(x) is a circulant matrix:

Uo U1 U9 - -
Un—1 U9 U1 """
C%u):: Un—2 Up—1 UQ " -

Uq U U - - -

min [|Xx ® w — g|l?

min [|C(x)w — gl

Up—1
Up—2
Up—3
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CirculantmatiIces

- We can see X = C(x) as a dataset with cyclically shifted versions of x:

- P Is a permutation matrix that

T -
EI; 1X§T shifts the pixels down 1 element.
4 X .
X = : - Arbitrary shift i obtained with power P'x.
B x)" | - Cyclic: P™"x = P%k = x.
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Circulant matrices have many nice properties.

i (POX)T - ')’21 0 07
I (Pn—.lx)T ] 0 0 ﬁn-
Data matrix is Becomes diagonal in
circulant = Fourier domain

Similar role to the Convolution Theorem.
Most of the “data” is O and can be ignored! = Massive speediup



Back to our question:
Why does the MOSSE filter work so well in practice?
Consider a simple Ridge Regression (RR) problem:

RR = Leastlsquares with

: _ vlI2 2
e [EW =y~ + Allwl regularization (avoids overfitting!)

Closedlform solution: w = (XTX + AI)~1xTy
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Back to our question:
Why does the MOSSE filter work so well in practice?

Consider a simple Ridge Regression (RR) problem:

, RR = Leastlsquares with
— vl|2 2
e [EW =y~ + Allwl regularization (avoids overfitting!)

Closedlform solution: w = (XTX + AI)~1xTy

Now replace X = C(x) (circulant data), and y = g (Gaussian targets).
Diagonalizing the involved circulant matrices with the DFT Yyields:

Which is exactly the MOSSE solution!

P X" Xy N So MOSSE is equivalent to a good
X*XX+ 41 learning algorithm (RR) with lots of
data (circulant/shifted samples).
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Circulant matrices are a very general tool, replacing
standard operations with fast Fourier operations.

For example, we can apply the same idea to Kernel Ridge Regression:

a=(K+rA)ty (K kernel matrix)

For many kernels, circulant data = circulant K:

K = C(k), where Kk is the first row of K
(small, and easy to compute)

Diagonalizing with the DFT vyields:

9 Fast solution in O(nlogn).

a= » = Typical kernel algorithms are
4 O (n?) or higher!
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Kernelized Correlation Filter (KCF) TL[) Struck

- Openlsource (ported to Matlab/Python/Java/C)
KCF
« ~300 FPS
Tracker
- Code base for top 3 trackers in VOT 2014.
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Code base for top 3 trackers in VOT 2014. 39
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Training and detection (Matlab)

function alphaf = train(x, y, sigma, lambda)
k = kernel_correlation(x, x, sigma);
alphaft = fft2(y) ./ (fft2(k) + lambda);
end

function y = detect(alphaf, x, z, sigma)

k = kernel_correlation(z, x, sigma);
y = real(ifft2(alphaf .* fft2(k)));
end

function k = kernel_correlation(x1l, x2, sigma)
c = ifft2(sum(conj(fft2(x1)) .* fft2(x2), 3));
d = x1(:)"*x1(:) + x2(:)"*x2(:) - 2 * c;
k = exp(-1 / sigma”2 * abs(d) / numel(d));

end

KCE Very few hyperparameters.

Tracker Fits on the back of a postcard,
native Matlab functions.
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Image size

Filter size

As a rule of thumb, similarly sized crossCcorrelation arguments
(e.g. image and filter) take the best advantage of the FFT.

Consider a n X n image and a f X f filter.
FFT complexity is O(n*logn) (/ndependent of f, big or small!).

CrossIcorrelation complexity is O(n?f?) (better when f «< n).
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When performing FFTs, the “classic advice” is to set the image
size to a powerloflitwo if possible:

size(x) = 2" x 2°, with integer r, s.

While this theoretically achieves the best speed, modern FFT
libraries (such as FFTW) are optimized for arbitrary sizes.

Rounding the size up to the next powerlofltwo has 2 drawbacks:

A mismatched size can degrade recognition performance
(e.g. by including unnecessary background regions in a filter).

If the next powerlofltwo is significantly larger, we can end up
with actually slower FFTs!
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Topics not covered here: ICC\V’13 (example detections)
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- Considering multiple samples by /

and features simultaneously.

- Circulant trick for other algorithms
(Support Vector Regression, etc).

- Generalizing shifts to other
transformations (rotations, etc).

- Fast training of classifier
ensemble (pose estimator).
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