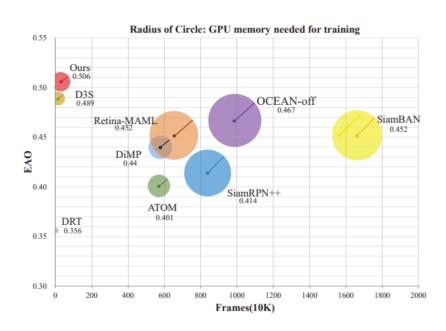
Learning Spatio-Appearance Memory Network for High-Performance Visual Tracking

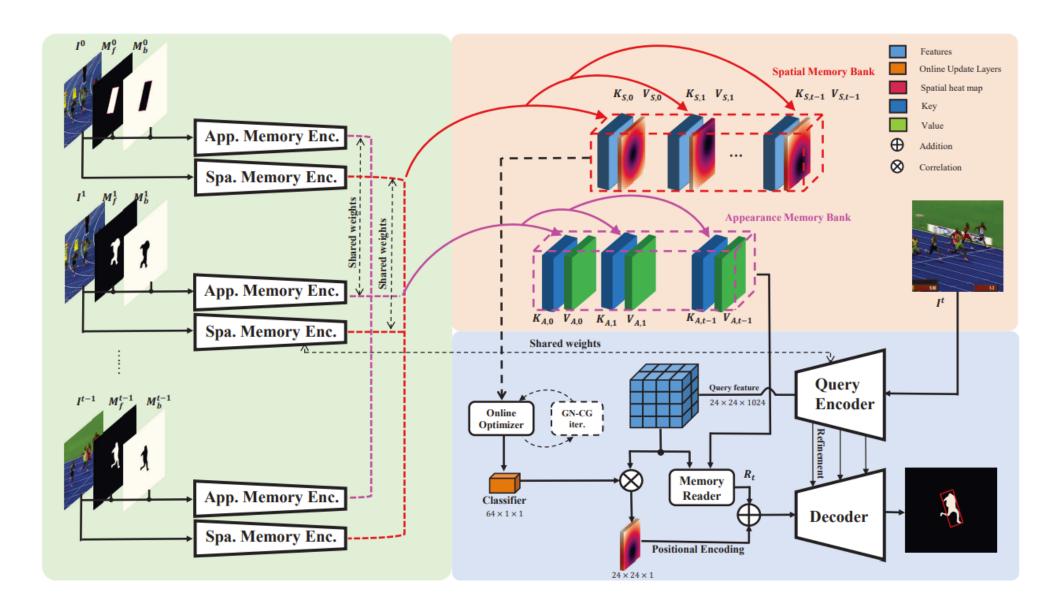
Fei Xie¹, Wankou Yang¹, Kaihua Zhang², Bo Liu³, Guangting Wang⁴, Wangmeng Zuo⁵

¹School of Automation, Southeast University, China

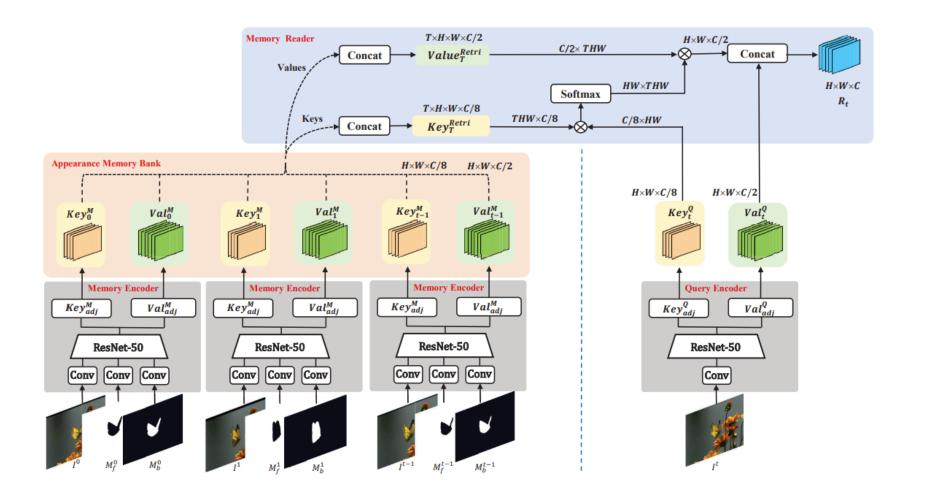
²Nanjing University of Information Science and Technology, China


³JD Finance America Corporation, Mountain View, CA, USA

⁴University of Science and Technology of China

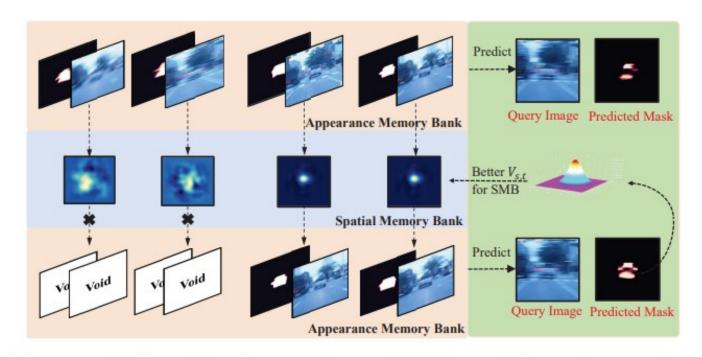

⁵School of Computer Science and Technology, Harbin Institute of Technology

Contributions


- 1. We adopt segmentation-based tracking model which is robust towards non-grid deformations.
- 2. Two memory banks for target regression and classification which both utilize temporal information.
- 3. A dynamic memory module to reweight memory samples.
- 4. Less training source to achieve high tracking performance.

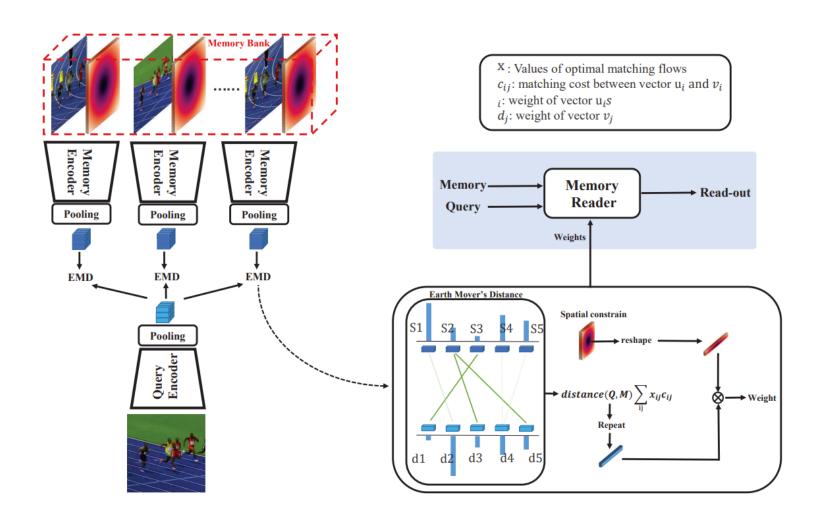
Pipeline

Appearance memory network



$$V_{A,t}^i = \sum_{j} \sum_{k=1}^{t-1} A_t^{i,j,k} V_{A,k}^j,$$

$$A_t^{i,j,k} = \frac{\exp\left\langle Q_t^i, K_{A,k}^j \right\rangle}{\sum_p \sum_{k=1}^{t-1} \exp\left\langle Q_t^i, K_{t-1}^p \right\rangle},$$


$$R_t = concat \left[V_{A,t}, V_{Q,t} \right],$$

Mutual Promotion Between Dual Memory Banks

Visualization on benefits from filtered samples.

Dynamic Memory Machine

$$s_a = \max\{\mathbf{u}_a^T \cdot \frac{\sum_{b=1}^{HW} \mathbf{v}_b}{HW}, 0\},\$$

$$s_a := s_a \frac{HW}{\sum_{b=1}^{HW} s_b}.$$

Dynamic Memory Machine

Visualization of spatio-temporal weights in DRM. Transparent regions are more likely to be activated during query operation.

Comparisons on VOT benchmarks

Trackers		SPM [43]	SiamMask-opt [44]	SaimRPN++ [21]	ATOM [7]	D3S [27]	Ours (SAMN)	
,	Acc.↑ VOT-16 Rob.↓ EAO↑	0.21	0.67 0.23 0.442	0.64 0.20 0.464	0.61 0.18 0.430	0.66 0.131 0.493	0.684 0.121 0.535	

Table 1. Results on VOT2016. Top-3 results of each dimension (row) are colored in red, blue and green, respectively.

Trackers	DiMP-50 [1]	SiamBAN [4]	D3S [27]	Ocean-off [54]	DCFST [56]	Ours (SAMN)
Acc.↑	0.590	0.597	0.597	0.64	0.598	0.652
VOT-18 Rob.↓	0.203	0.152	0.178	0.150	0.169	0.145
EAO↑	0.440	0.452	0.489	0.467	0.452	0.521

Table 2. Results on VOT2018. Top-3 results of each dimension (row) are colored in red, blue and green, respectively.

Trackers	SiamRPN++	ATOM	Retina-MAML [42]	SiamFCOT [19]	Ocean-off	Ours (SAMN)
Acc.↑	0.580	0.603	0.570	0.601	0.590	0.639
VOT-19 Rob.↓	0.446	0.411	0.366	0.386	0.376	0.231
EAO↑	0.292	0.292	0.313	0.350	0.327	0.408

Table 3. Results on VOT2019. Top-3 results of each dimension (row) are colored in red, blue and green, respectively.

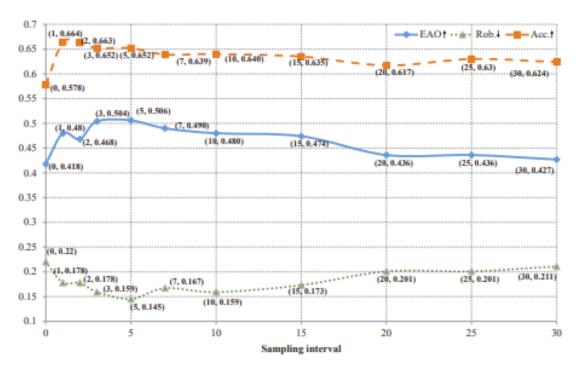
Trackers	SiamRPN++	ATOM	DiMP-18	DiMP-50	D3S	Ocean-off	Ours (SAMN)
GOT-10K SR. ₇₅ ↑	32.5 51.8	40.2	44.6	49.2	46.2	-	52.2
AO↑	51.8	55.6	57.9	61.1	59.7	59.2	61.5

Table 4. Results on GOT-10K. Top-3 results of each dimension (row) are colored in red, blue and green, respectively.

Tra	nckers	SiamRPN++	ATOM	DiMP-50	Retina-MAML	D3S	Ours (SAMN)
TrackingNet	Prec.↑ Norm. Prec.↑ Succ.↑	69.4 80.0 73.3	64.8 77.1 70.3	68.7 80.1 74.0	78.6 69.8	66.4 76.8 72.8	69.7 79.4 74.2

Table 5. Results on TrackingNet. Top-3 results of each dimension (row) are colored in red, blue and green, respectively.

Trackers	SiamMask	STM	DET50 [19]	Ocean	D3S	Ours (SAMN)
Mask	✓	✓	✓	✓	✓	✓
VOT-20 Acc.↑	0.624	0.751	0.679	0.693	0.699	0.720
Rob.↓	0.648	0.574	0.787	0.754	0.769	0.794
EAO↑	0.321	0.308	0.441	0.430	0.439	0.461

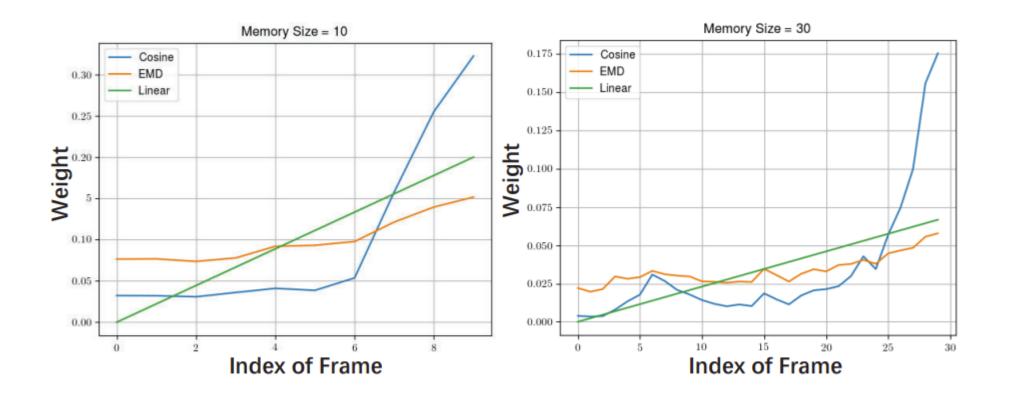

Table 6. Results on VOT2020. "Mask" denotes that prediction format is mask. Top-3 results of each dimension (row) are colored in red, blue and green, respectively.

Comparisons on VOS benchmarks

	$\mathcal{J}_{\mathcal{M}}^{16}$	$\mathcal{F}_{\mathcal{M}}^{16}$	$\mathcal{J}\&\mathcal{F}^{16}$	$\mathcal{J}_{\mathcal{M}}^{17}$	$\mathcal{F}_{\mathcal{M}}^{17}$	$\mathcal{J}\&\mathcal{F}^{17}$
Ours(SAMN)	79.0	75.5	77.3	64.8	67.7	66.3
D3S [27]	75.4	72.6	74.0	57.8	63.8	60.8
SiamMask [44]	71.7	67.8	69.8	54.3	58.5	56.4
OnAVOS [40]	86.1	84.9	85.5	61.6	69.1	65.4
STM [31]	84.8	88.1	86.4	69.2	74.0	71.6
MAST [20]	-	-	-	63.3	67.6	65.5
FAVOS [5]	82.4	79.5	80.9	54.6	61.8	58.2
VM [14]	81.0	-	-	56.6	-	-
OSVOS [3]	79.8	80.6	80.2	56.6	63.9	60.3
PLM [38]	75.5	79.3	77.4	-	-	-
OSMN [51]	74.0	72.9	73.5	52.5	57.1	54.8

Comparison with segmentation-based trackers and VOS methods on DAVIS16 and DAVIS17.

Ablation studies


Time interval indicates the sampling interval of memory bank. Zero interval indicates that only the first frame and its ground truth is stored. Up-arrow (down-arrow) indicates higher (lower) is better.

Ablation studies

Ablation stud	v on	VOT2018	and DAVIS16.
Tioranon stud	y OII	V O 1 2 0 1 0	and Driving.

			_						
Last Add.	✓		✓	✓	✓	✓	✓	✓	\checkmark
Interv.	5	5	5	10	5	5	15	20	5
Filter Samp.	✓	\checkmark	\checkmark	\checkmark		\checkmark			\checkmark
Pos. Encod.	sum	sum	sum	sum	sum	cat	sum	sum	sum
DRM	✓	\checkmark							
A ↑	65.2	66.5	63.5	64.0	62.7	65.0	62.2	62.0	63.4
$R\downarrow$	0.145	0.173	0.164	0.159	0.210	0.150	0.225	0.227	0.173
EAO ↑	50.6	46.7	49.2	48.0	42.1	48.6	41.0	40.2	45.1
$\mathcal{J}\&\mathcal{F}^{16}\uparrow$	77.3	70.3	-	67.8	69.1	-	66.4	63.6	67.2

Ablation studies

Comparisons of weights generation method.

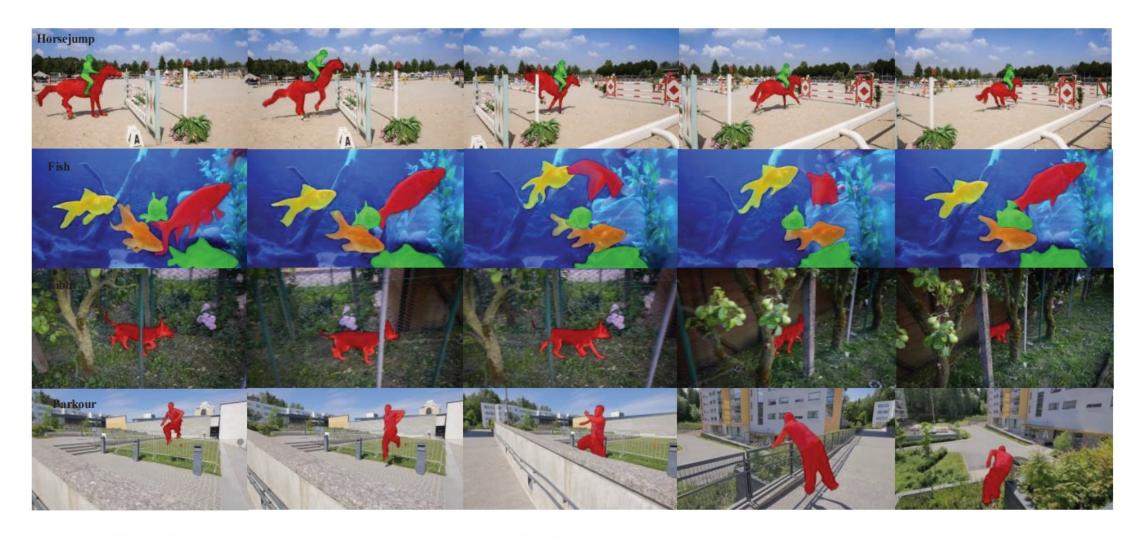


Figure 1: Video object segmentation on DAVIS16 or DAVIS17 datasets. Our tracker outperforms the leading segmentation-based trackers and predicts accurate masks under challenging scenes.

Figure 2: Examples of sequences with similar distractors and extreme complex background. It shows our tracker is robust to the similar objects even the distractors are closed to the tragets. Our tracker can also handle with the complex background such as dark, raining and blur.

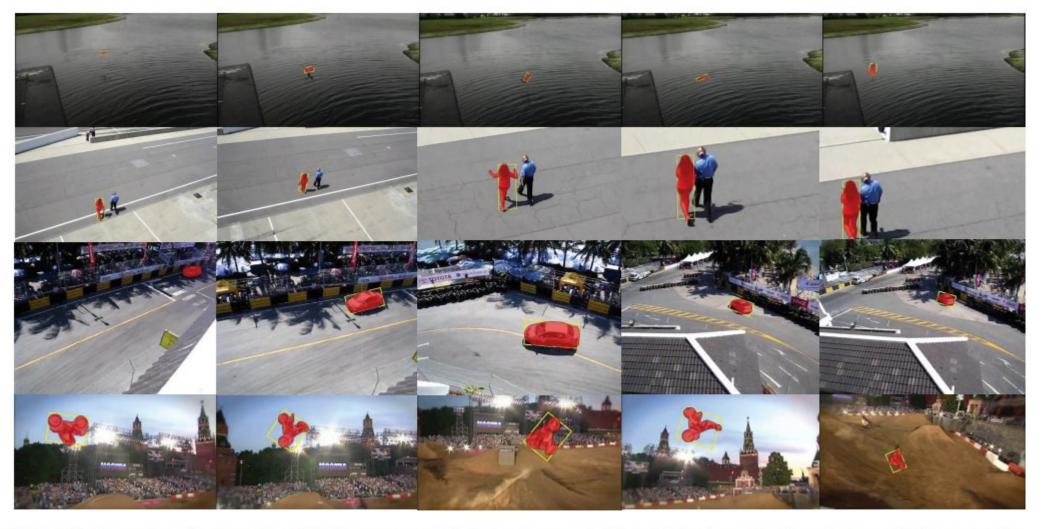


Figure 3: Examples of sequences with dim targets and appearance variations. As is shown in the sequence Bird, our tracker can predict accurate segmentation results even when target is extremly small. Moreover, our tracker achieves marvelous performance when fast-moving targets have extrme appreance deformation.

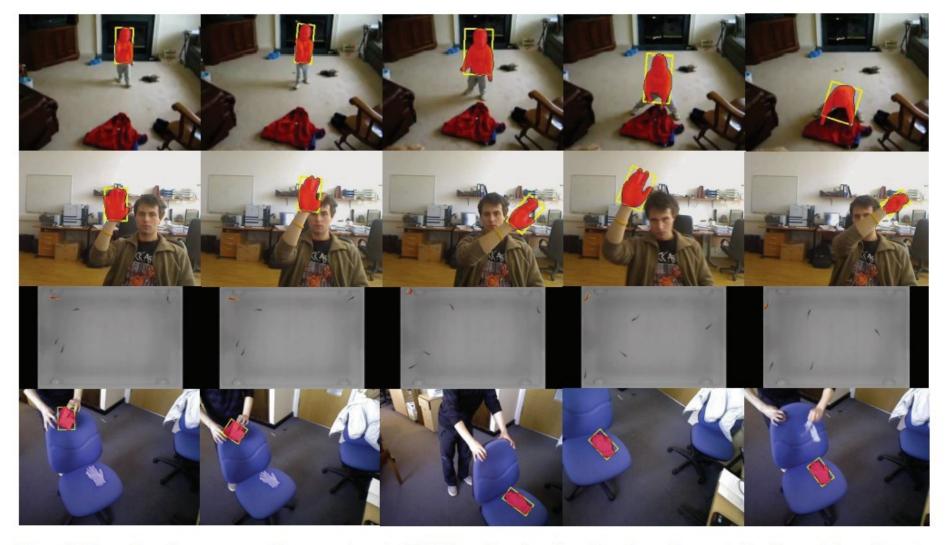


Figure 4: Examples of sequences with unseen targets. DNN-based trackers heavily rely on the pre-trained knowledge of targets. Our tracker utilizes the spatiotemporal information of every frame to enhance the generalizaion ability. From the examples of hand, blanket and glove, our tracker still tackles with those unseen targets well.

For more details, please refer to our paper.

Thanks!

https://github.com/phiphi31/DMB

Learning Spatio-Appearance Memory Network for High-Performance Visual Tracking

Fei Xie, Wankou Yang, Kaihua Zhang, Bo Liu, Guangting Wang, Wangmeng Zuo