S CC VOCTOBER 11-17

Fusing Complementary Trackers for Long-Term Visual Tracking

Matteo Dunnhofer

Kristian Simonato

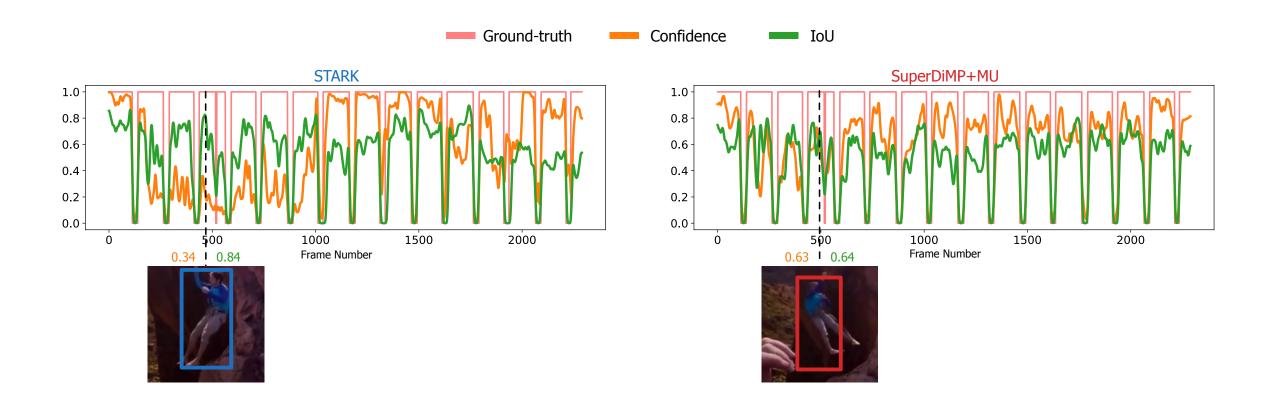
Christian Micheloni

Motivation

^{[1] &#}x27;Learning Spatio-Temporal Transformer for Visual Tracking', ICCV 2021

^{[2] &#}x27;The Eight Visual Object Tracking Challenge Results', VOT2020

Motivation



Fusion of Trackers

MEEM: Robust Tracking Entropy M

Department of Computer Sc {jmzhang, shugaon

Abstract. We propose a multi-expert drift problem in online tracking. In the ical snapshots constitute an expert enser restore the current tracker when needed so as to correct undesirable model updi so as to correct understance mouter upon exploits an online SVM on a budget alg method for efficient model update and method achieves substantially better ove benchmark dataset of 50 video sequence addition in experiments with a newly of

1 Introduction

In this paper we focus on the problem detection framework. In many online track updates, which are intended to account for the process of updating the model also bri challenge in online visual tracking.

Model drift occurs because factors like to of training samples can lead to bad model u frame template or prior knowledge in the o eyer, relying on a fixed model prior tends t where an update is prevented when certain of good or bad updates usually relies upon appearance changes, which are often viola ensorship mechanism fails, these trackers trapped in a background region, due to the

Instead of trying to prevent bad update that can correct the effects of bad updates

D. Floet et al. (Eds.): ECCV 2014, Part VI, LNCS 86

ECCV 2012

Visual Tracking via Ada

1 Ju Hong Yoon, 2 Du

Computer Vision Lab. Gwangji Applied Computing Lab. Gwang (ihvoon, kivoon)@gi

Abstract. In this paper, a robust pose variations, and occlusions. To with different feature descriptors at level of robustness to certain chan independent trackers, we propose to action. The tracker interaction is ac-(TPM) in a probabilistic manner. T from among multiple tracker output tracker probability. According to TPM and tracker probability are u function (TLF). When the tracking ject's state is obtained and fed into strategy, which retains the robustn trackers. The experimental results

Keywords: Visual tracking, multi

1 Introduction

ECCV 2012

Visual tracking is an important resear ing, medical imaging, and so on. Due t ations, visual tracking is required to dynamic circumstances such as object pose variation, occlusions, and motion researchers have discussed how to imp multiple features in an efficient manne

In this paper, we propose a new vinower under the conditions to which

Ensemble-Base Aggregating Crowdsourced Str

Dit-Yan Yeung

Department of Computer Science and Engineering, Hong Kong Clear Water Bay, Hong Kong

We study the problem of aggregating the contributions of multiple contributors in a crowdsourcing setting. The data involved is in a form tasks, in that the data is structured and has a temporal dimension. In particular, we study the visual tracking problem in which the unknown data to be estimated is in the form of a sequence of bounding boxes representing the trajectory of the target object being tracked. We propose a factorial hidden Markov model (FHMM) for ensemble-based tracking by learning jointly the unknown trajectory of the target and the reliability of each tracker in the ensemble. For ef-ficient online inference of the FHMM, we devise a conditional particle filter algorithm by exploiting the structure of the joint posterior dis tribution of the hidden variables. Using the largest open benchmark for visual tracking, we empirically compare two ensemble methods constructed from five state-of-the-art trackers with the individual trackers. The promising experimental results provide empirical evidence for our ensemble approach to "get the best of all worlds"

Visual tracking is a fundamental problem in video semantic analysis. Although it is not a new research problem in computer vision, the challenging requirements of many new applications such as terrorist detection, self-driving cars and wearable computers require that some objects of interest possibly with fast and abrupt motion in uncontrolled envi ronments be tracked as they move around in a video. This has led to a resurgence of interest in visual tracking within the machine learning and computer vision communities. In

Proceedings of the 31st International Conference on Machine Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-right 2014 by the author(s).

Online Adaptive Hid Multi-Tra

Tomas Vojira, Jiri l

"The Center for Machine Karlovo namesti 13, 121 ^bFaculty of Civil Eng

Abstract

20

4

In this paper, we propose a novel HMMTxD. The method fuses observ trackers and a detector by utilizing a l correspond to a binary vector expres Markov model is trained in an unsur detector to provide a source of track Baum- Welch algorithm that updates t

We show the effectiveness of the and three tracking algorithms. The two standard benchmarks (CVPR2013 publicly available sequences. The H often significantly, on all datasets in alr

visual tracking, on-line learning, hidde

*corresponding author

Email addresses: vojirtom@cmp.fel matas@cmp.felk.cvut.cz (Jiri Matas), URL: http://cmp.felk.cvut.cz

A Superior Tracking Building a Strong Tracker

Christian Bailer¹, Alain Pagani¹, and

German Research Center for Artificial Intelliger {Christian.Bailer, Alain.Pagani, Didier ² University of Kaiserslautern

> Abstract. General object tracking is a challen tracking algorithm performs well on different each of them has different strengths and weak fact can be utilized to create a fusion approach the best tracking algorithms in tracking per namic programming based trajectory optimiza perform tracking algorithms in accuracy but aspects like trajectory continuity and smooth is very generic as it only requires frame-based of the object's bounding box as input and thu tracking algorithms. It is also suited for live to approach using 29 different algorithms on 51 se periority of our approach compared to state-of-

Keywords: Object Tracking, Data Fusion.

1 Introduction

Visual object tracking is an important problem i a wide range of applications such as surveillance, and interactive video production. Nowadays, the p for many specific scenarios like car tracking [18] ever, object tracking in the general case i.e. when scenarios shall be tracked can still be considered sible challenges that can occur in an unknown sc numerous to consider them all with reasonable et least with todays capabilities. Classical challenge changes, shadows, translucent/opaque and comp tions, deformations, scale changes, low resolution background and similar objects in the scene.

As the evaluation in [29] and our comparison in algorithm performs well on different sequences. might fail for a sequence where an on average bad For example in Table 1 the on average best alg

D. Fleet et al. (Eds.): ECCV 2014, Part VII, LNCS 8695, pp.

Online Decision Reinfo

Ke Song V School of Control Science at sonake {davidzhar

A deep visual tracker is typic matching while each of them It is straightforward to consid Unlike previous fusion-based a named DTNet, with an online hierarchical reinforcement lea intelligent switching strategy w compete with each other to c issue of incorrect proposal. Ex of-the-art tracking performate fficiency. The project web

1 Introduction

As a fundamental task in computer visi object in a sequence of images. Inspired tasks, recent visual tracking algorithms i deep representations for various scene schemes. The first one treats tracking a distinguish the foreground target from th a template matching task and addresses learns a general similarity function to of

The detection tracker continuously und target by itself. The diverse appearances the continuous update is inefficient for detection in a frame which represents: The template tracker utilizes the initial matching operation, which runs efficie Either the detection or the template to instance, as shown in the top row of Fig. looks back to the real target in the init

34th Conference on Neural Information Pr

This ACCV 2020 paper, provided here by the Computer Vision Foundation, is the author-created version. The content of this paper is identical to the content of the officially published ACCV 2020. LNCS version of the paper as available on SpringerLink: https://link.springer.com/

Tracking-by-Trackers with a Distilled and Reinforced Model

{matteo.dunnhofer, niki.martinel, christian.micheloni}@uniud.it

Machine Learning and Perception Lab, University of Udine, Italy

Abstract. Visual object tracking was generally tackled by reasoning independently on fast processing algorithms, accurate online adaptation methods, and fusion of trackers. In this paper, we unify such goals by proposing a novel tracking methodology that takes advantage of other risual trackers, offline and online. A compact student model is trained via the marriage of knowledge distillation and reinforcement learning. The first allows to transfer and compress tracking knowledge of other trackers. The second enables the learning of evaluation measures which are then exploited online. After learning, the student can be ultimately used to build (i) a very fast single-shot tracker, (ii) a tracker with a simple and effective online adaptation mechanism, (iii) a tracker that performs fusion of other trackers. Extensive validation shows that the proposed algorithms compete with real-time state-of-the-art trackers.

1 Introduction

Visual object tracking corresponds to the persistent recognition and localization by means of bounding boxes- of a target object in consecutive video frames This problem comes with several different challenges including object occlu sion and fast motion, light changes, and motion blur. Additionally, real-time constraints are often posed by the many practical applications, such as video surveillance, behavior understanding, autonomous driving, and robotics.

In the past, the community has proposed solutions emphasizing different as pects of the problem. Processing speed was pursued by algorithms like correlation filters 12345 or offline methods such as siamese convolutional neural networks (CNNs) [6789]1011112. Improved performance was attained by online target adaptation methods [1314151617]. Higher tracking accuracy and robustness were achieved by methods built on top of other trackers [18]19 20 21 22. All these characteristics belong to an optimal tracker but they were studied one in dependently from the other. The community currently lacks a general framework to tackle them jointly. In this view, a single model should be able to (i) track an object in a fast way, (ii) implement simple and effective online adaptation mechanisms, (iii) apply decision-making strategies to select tracker outputs.

It is a matter of fact that a large number of tracking algorithms has been

produced so far, with different principles exploited. Preliminary solutions were

ICML 2014

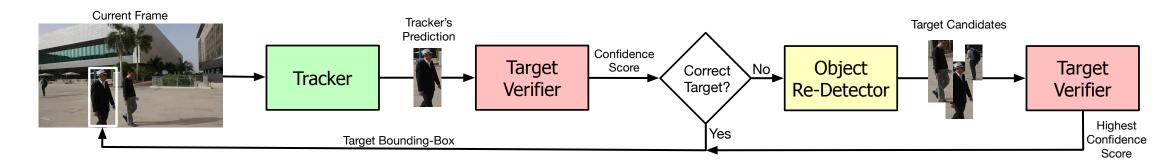
CVIU 2016

FCCV 2014

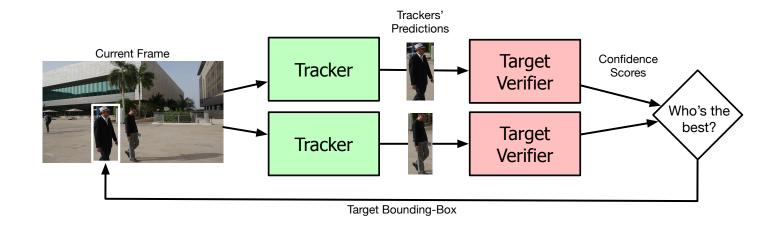
NeurIPS 2020

ACCV 2020

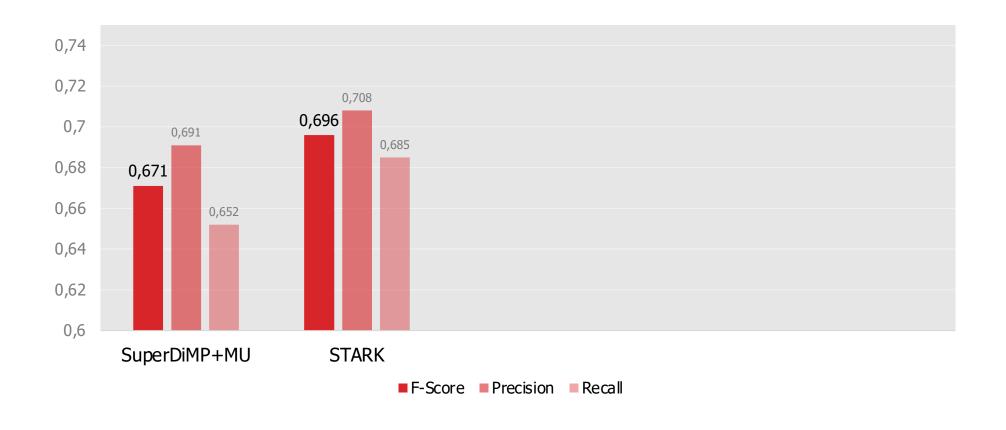
A Different Long-Term Pipeline



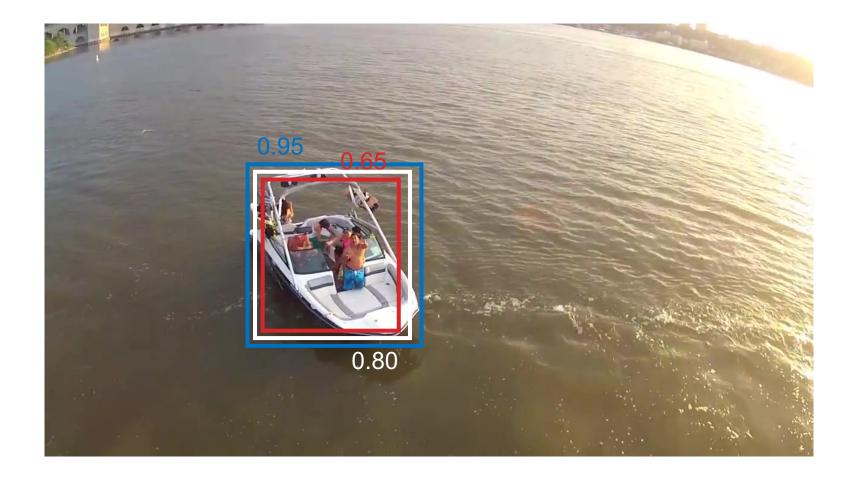
Scheme of the most successful standard long-term solutions



Fusion Baselines

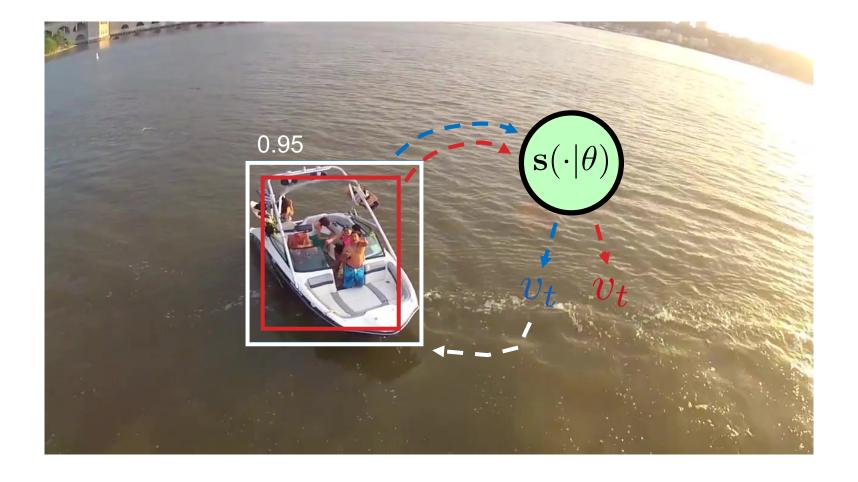


Fusion Baselines - Avg

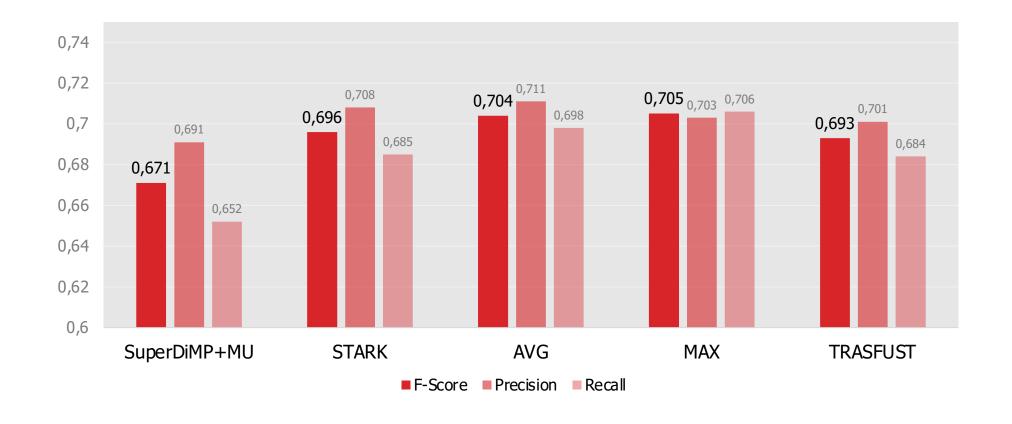


Fusion Baselines - Max

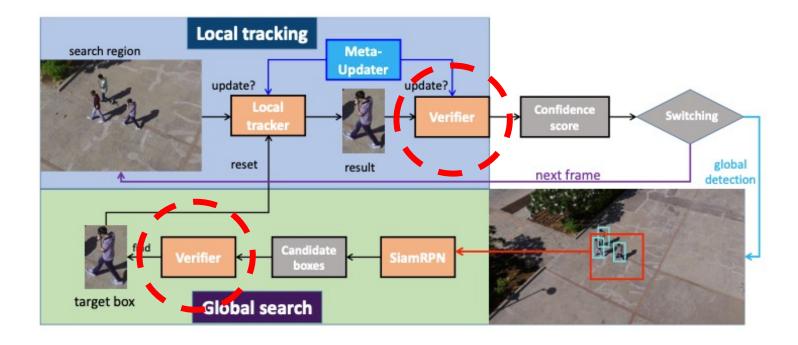
Fusion Baselines - TRASFUST



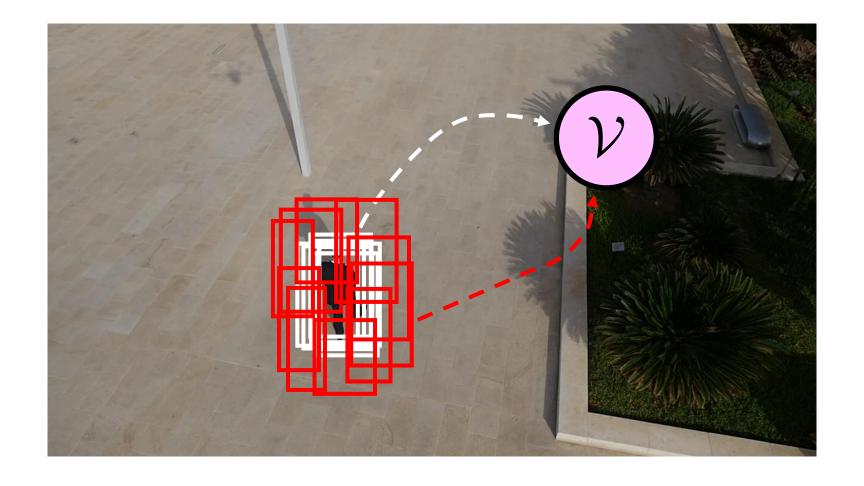
Fusion Baselines



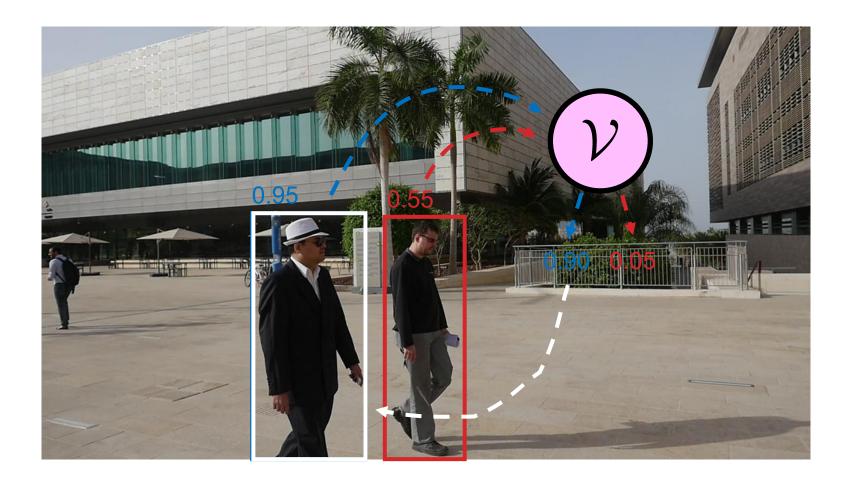
mlpLT - Verifier



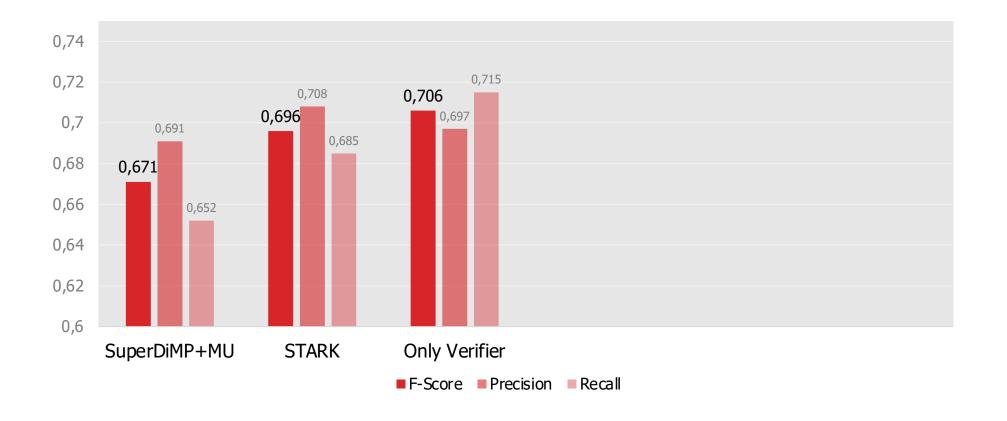
mlpLT – Verifier initialization



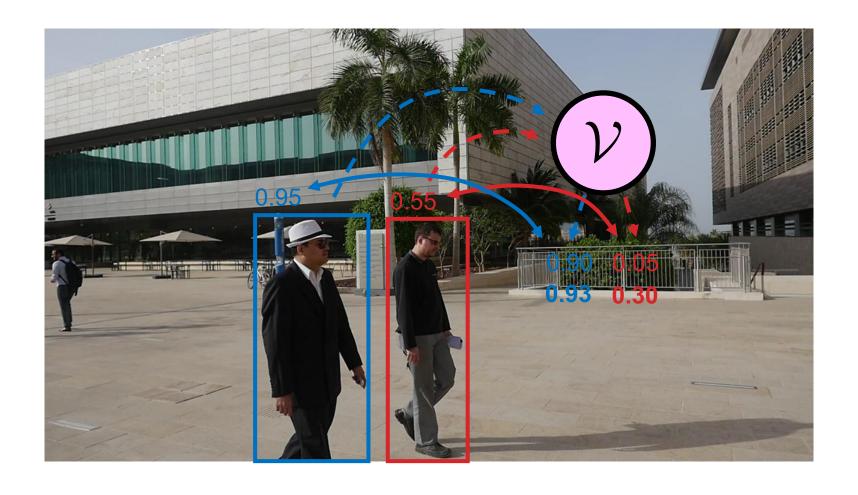
mlpLT - Target Verification



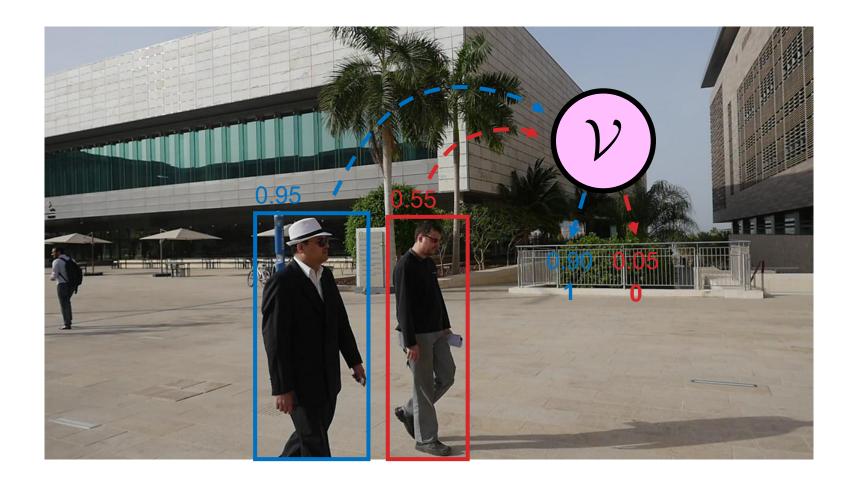
Results



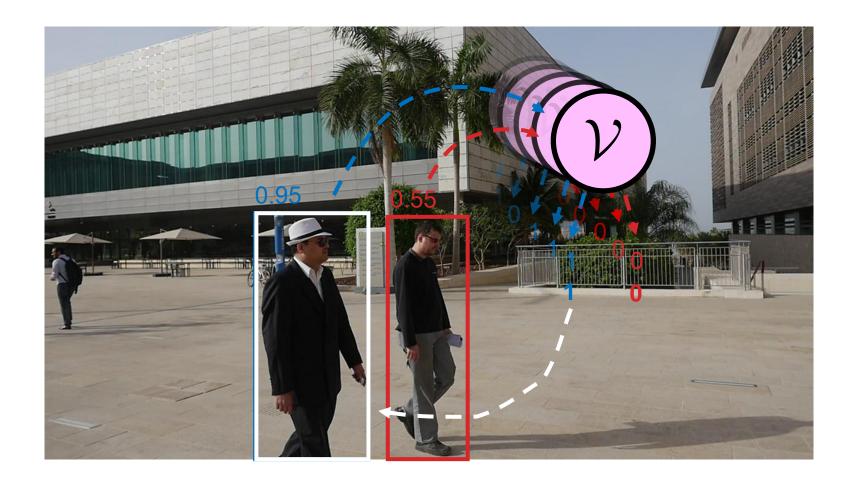
mlpLT - Confidence Combination



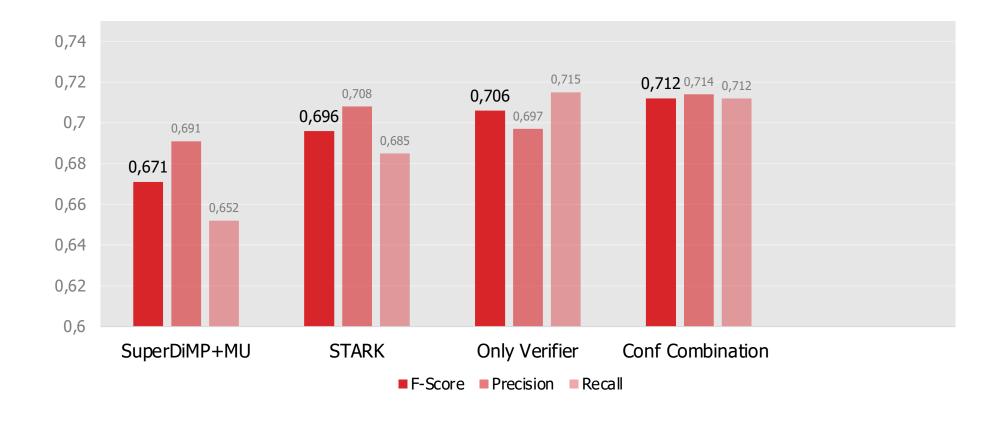
mlpLT - Confidence Thresholding



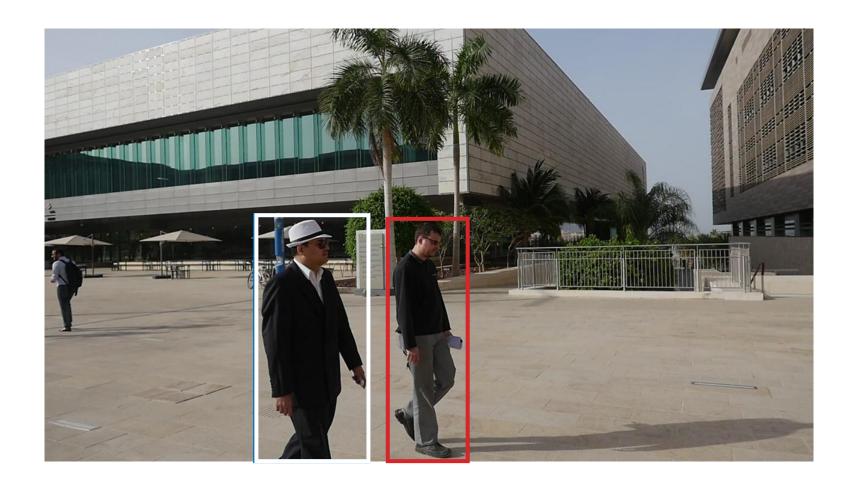
mlpLT - Confidence Over Frames



Results

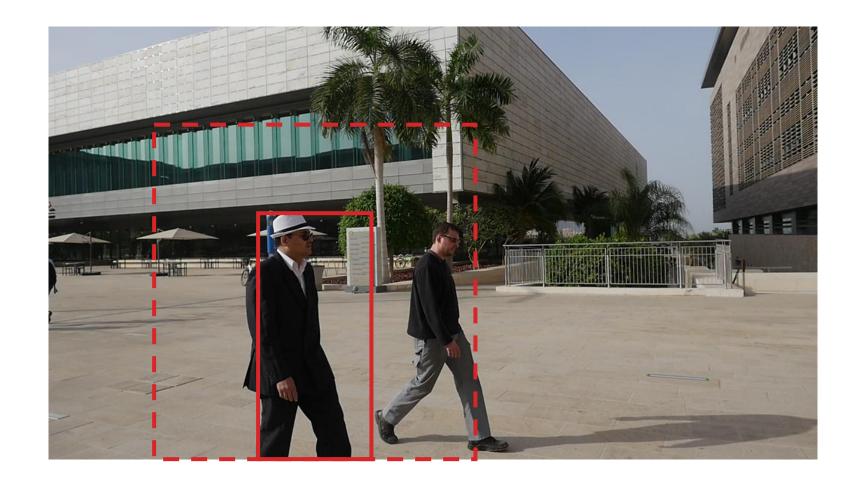


mlpLT - Tracker Correction

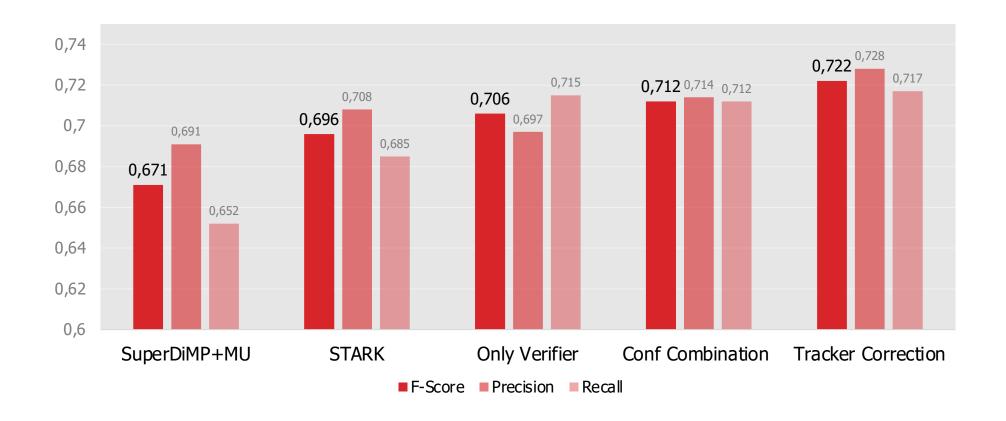


mlpLT - Tracker Correction

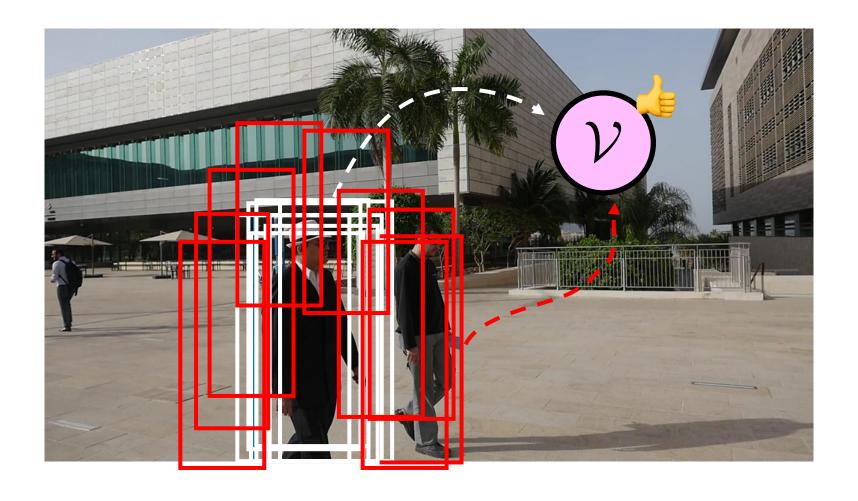
mlpLT - Tracker Correction



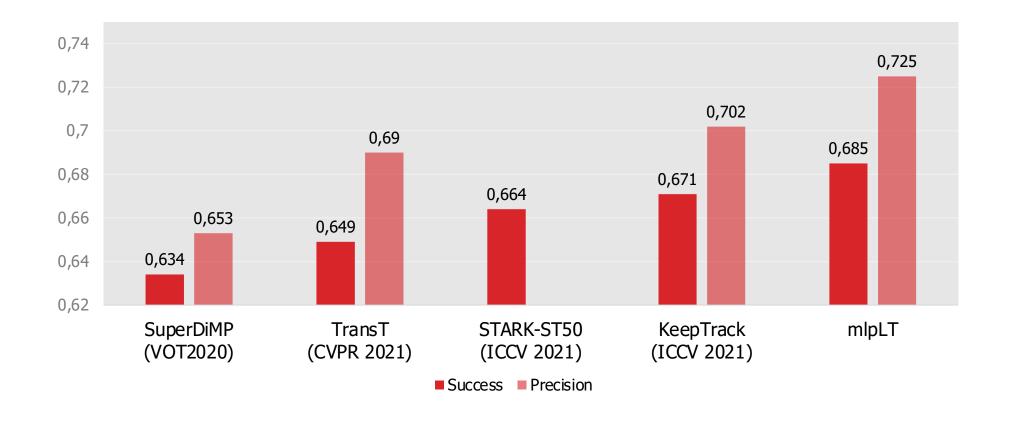
Results



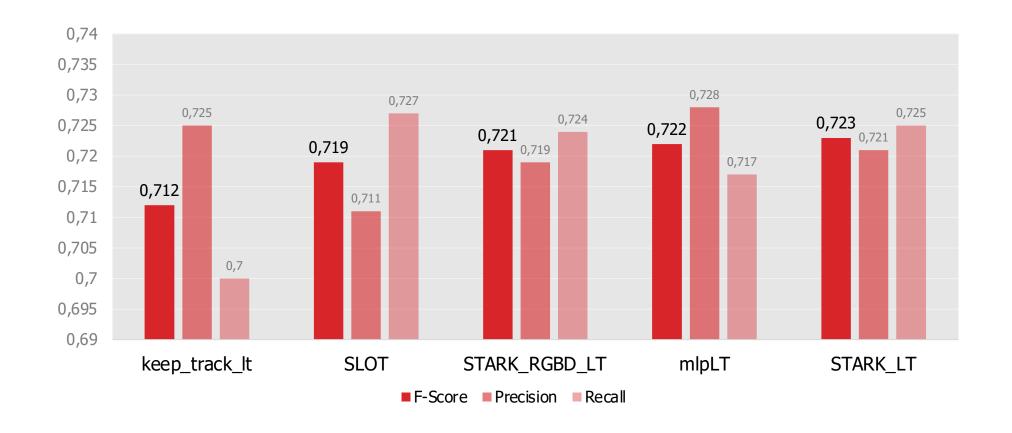
mlpLT – Online Update

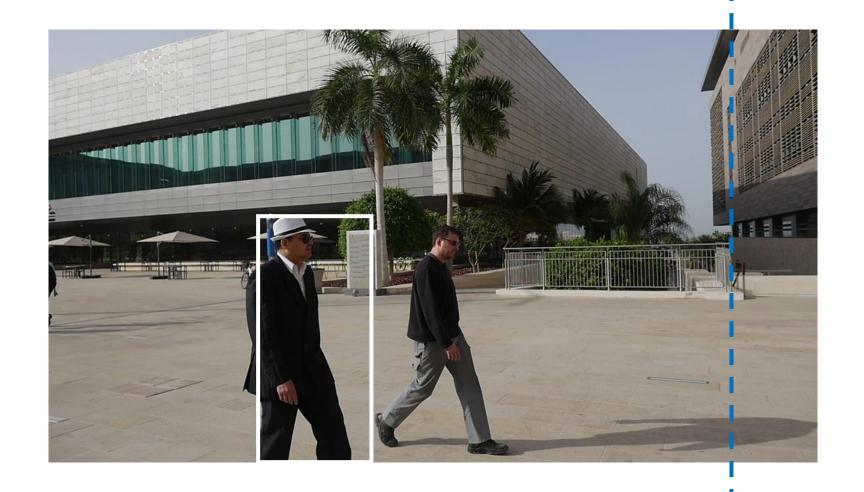


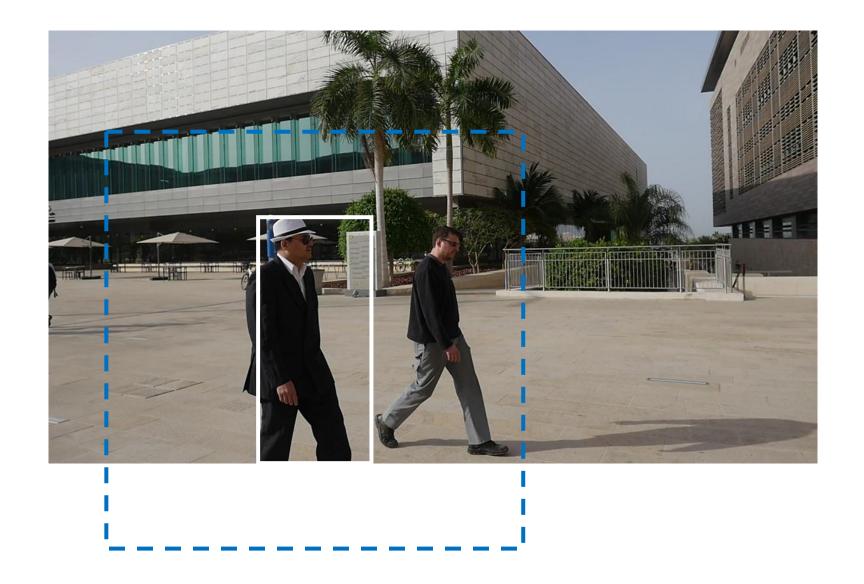
Results - LaSOT

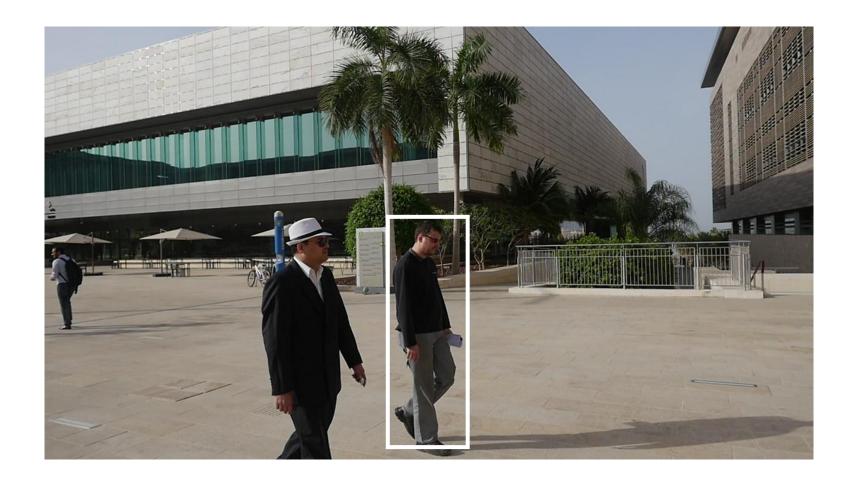


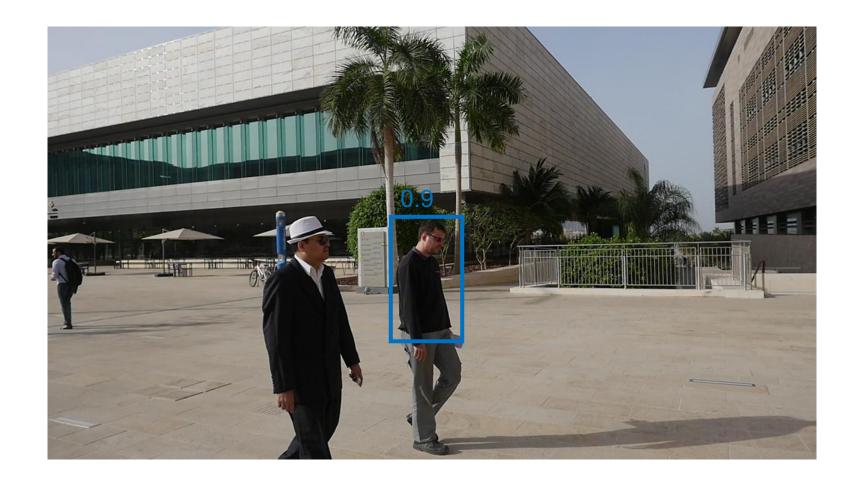
Results – VOTLT2021

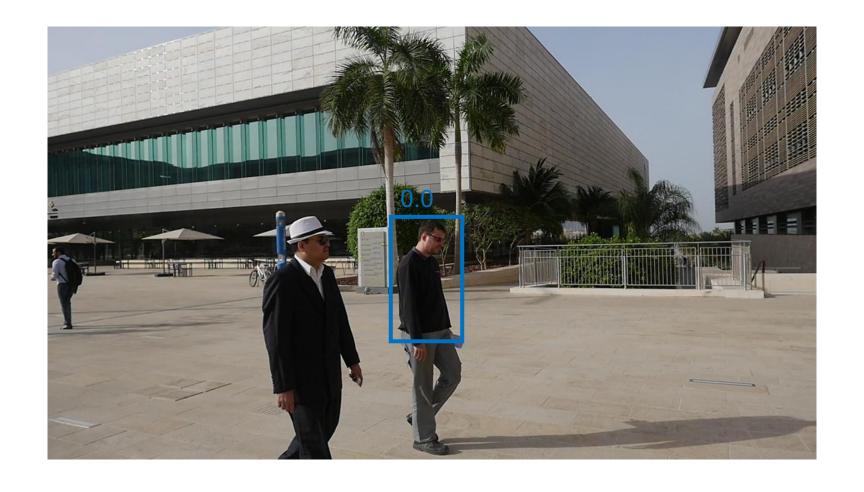




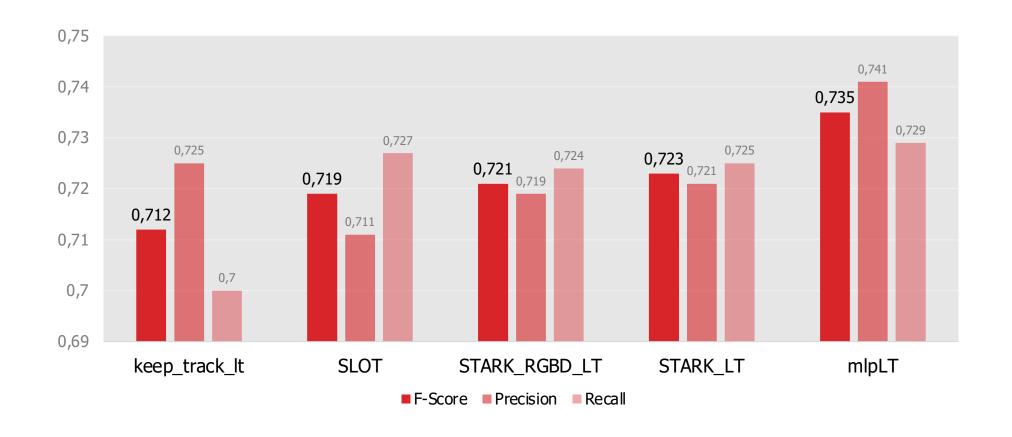








Results – VOTLT2021



Thank you!