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Abstract

We study the problem of aggregating the con-
tributions of multiple contributors in a crowd-
sourcing setting. The data involved is in a form
not typically considered in most crowdsourcing
tasks, in that the data is structured and has a
temporal dimension. In particular, we study the
visual tracking problem in which the unknown
data to be estimated is in the form of a sequence
of bounding boxes representing the trajectory
of the target object being tracked. We propose
4 factorial hidden Markov model (FHMM) for
easemble-based tracking by learning jointly the
unknown trajectory of the target and the relis-
bility of each tracker in the ensemble. For ef-
ficient online inference of the FHMM, we de-
vise a conditional particle fiter algorithm by ex-
ploiting the structure of the joint posterior dis-
tribution of the hidden variables. Using the
largest open benchmark for visual tracking, we

pirically compx
structed from five state-of-the-art trackers with
the individual trackers. The promising experi-
mental results provide empirical evidence for our
casemble approach to “get the best of all worlds”.

1. Introduction

Visual tracki
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power under the conditions to which
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analysis. Although it is not a new research problem in com-
puter vision, the challenging requirements of many new ap-
plications such as terrorist detection, self-driving cars and
wearable computers require that some objects of interest
possibly with fast and abrupt motion in uncontrolled eavi-
ronments be tracked as they move around in a video. This
has led to a resurgence of interest in visual tracking within
the machine learning and computer vision communities. In
Proceedings of the 31" International Conference on Machine

Learning, Beijing. China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).
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1 Introduction
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Abstract. Visual object tracking was generally tackled by reasoning
independeatly on fast processing algorithms, accurate online adaptation

hods, and fusion of trackers. In this paper, we unify such goals by
propasing a novel tracking methodology that takes advantage of other
visual trackers, offline and online. A compact student model is trained
vin the marriage of knowledge distillation and reinforcement learning.
The first allows to transéer and compress tracking knowledge of other
trackers. The second enables the learning of evaluation measures which
are then exploited online. After learning, the student can be ultimately

used to build (i) & very fast single-shot tracker, (i)
simple and cfiective online adaptation mechanism, (i
performs fusion of other trackers. Extensive valid

tracker with a

on
propased algorithms compete with real-time state-of-the-art trackers.

1 Introduction

Visual object tracking corresponds to the persistent recognition and localization
by means of bounding boxes- of a target object in consecutive video frames.
This problem comes with several different challenges including object occlu-
sion and fast motion, light changes, and motion blur. Additionally, real-time
constraints are often posed by the many wu‘uml apphulwns, such as video
. behavior ving, and robotics.

In the past, the community has proposed iolnuon- emphasizing different as-

pects of the problem. Processing speed was pursued by algorithms like correlation

neural networks

filters [IR2131415] or offline i

(CNNs) [001012). Improved perfomunce was attained by online target

adaptation methods [L3IIAIIS16I17]. Higher tracking accuracy and robustness
[1sNeR0R1122]. An

were achieved by methods built on top of other trackers

these characteristics belong to an optimal tracker but they were studied one in-

from the other. Th

currently lacks a general framework

to tackle them jointly. In this view, a single model should be able to (i) track

meck

an object in a fast way, (ii) implement simple and effective online adaptation
hanisms, (iii) apply decision-making strategies to sclect tracker outputs.

It is a matter of fact that a large number of tracking algorithms has been
produced so far, with different principles exploited. Preliminary solutions were
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A Different Long-Term Pipeline

Current Frame

14

Tracker’s
Prediction

Tracker

Target
Verifier

Confidence
Score

Target Bounding-Box

Correct

Target Candidates

Object
Re-Detector

Target
Verifier

Highest
Confidence

Scheme of the most successful standard long-term solutions

Current Frame
AL

Trackers’
Predictions

B

Tracker

Target
Verifier

Tracker

Target
Verifier

Confidence
Scores

Target Bounding-Box

Scheme of our approach

Score




Fusion Baselines

0,74

0,72
0,708

0,696

SuperDiIMP+MU STARK

m F-Score m Precision Recall

0,7 0,691

0,685

0,68 0,671

0,66

0,652

0,64

0,62

0,6




Fusion Baselines - Avg




Fusion Baselines - Max




Fusion Baselines - TRASFUST

[3] “Tracking-by-Trackers with a Distilled and Reinforced Model’, ACCV 2020
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mIpLT - Verifier
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mIpLT — Verifier initialization




mipLT — Target Verification
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Results
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mIpLT — Confidence Combination
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mipLT - Confidence Thresholding
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mIpLT - Confidence Over Frames
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mIpLT — Tracker Correction




mIpLT — Tracker Correction
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mIpLT — Tracker Correction
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mIpLT — Online Update
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Results - LaSOT
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Results — VOTLT2021
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mIpLT — Improvements to STARK
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mIpLT — Improvements to STARK
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Results — VOTLT2021
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