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t=0 t=1

Visual tracking

• We are given the initial bounding box (BB) of a target.
• Estimate its BB in later frames of a video (“track the target”).
• Important component of many Computer Vision pipelines

(simpler/faster than detection; ensures temporal consistency).
• Successfully tracked frames yield more information on target appearance.

?
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Visual tracking – discriminative
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Visual tracking – discriminative
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∎ Unspecified



Visual tracking – discriminative
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…

Classify subwindows 
to find target
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The Convolution Connection

� = ���

• Linear classifier with 
weights � :
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The Convolution Connection

� = ���

� = �⊛�

• Linear classifier with 
weights � :

• Evaluate it at subwindows �� :
…

� = 1
� = 2
� = 3

�� = ����

• Concatenate �� into a vector �.
• Equivalent to crosscorrelation (or correlation for short)

P

P• Note: Convolution is related; it is the same as crosscorrelation, 
but with the flipped image of � (    → ).

11



The Convolution Theorem

� = �⊛� �� = ��∗ × ��⟺

• Crosscorrelation is equivalent to an
elementwise product in Fourier domain:

• �� = ℱ(�) is the Discrete Fourier Transform (DFT) of �.
(likewise for �� and ��).

• × is elementwise product.
• .∗ is complexconjugate (i.e. negate imaginary part).

where

• Note that crosscorrelation, and the DFT, are cyclic
(the window wraps at the image edges).
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The Convolution Theorem

� 		ℱ

		ℱ��

� 		ℱ

	× �

��∗

��

��

• In practice:

• Can be orders of magnitude faster:

• For � × � images, crosscorrelation is �(��).

• Fast Fourier Transform (and its inverse) are �(�� log �).

� = �⊛� �� = ��∗ × ��⟺

			.∗	

• Crosscorrelation is equivalent to an
elementwise product in Fourier domain:
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The Convolution Theorem

• The evaluation of any linear 
classifier can be accelerated 
with the Convolution Theorem.
(Not just for tracking.)

…

• What about training?

• It turns out that Signal Processing studied this problem for decades, 
almost separately from mainstream Computer Vision!
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Objective

Intuition of training objective:

• Crosscorrelation of classifier � and a training image � should have:

• A high peak near the true location of the target.

• Low values elsewhere (to minimize false positives).

⊛ � =

High values

Low values
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Historical Perspective

• Minimum Average Correlation Energy (MACE) filters (1980’s)

• Bring the average correlation output towards 0:

min
�

	 �⊛� �

• While keeping the peak value fixed:

subject	to:		��� = 1

• The goal is to produce a sharp peak at the target location.

�⊛�
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Historical Perspective

• Minimum Average Correlation Energy (MACE) filters (1980’s)

• The solution is:
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�⊛�

�� =
��

��∗ × ��

where division and product (×) are elementwise.



Historical Perspective

• Minimum Average Correlation Energy (MACE) filters (1980’s)

• The solution is:

• ��∗ × �� is called the spectrum and is realvalued.

• Dividing by the spectrum is a common feature of 
many filters; it brings the autocorrelation to 0.

• Sharp peak = good localization! Are we done?
18

�⊛�

�� =
��

��∗ × ��

where division and product (×) are elementwise.



Historical Perspective

The MACE filter suffers from 2 issues:

• Hard constraints easily lead to overfitting.

• UMACE (“Unconstrained MACE”) attempts to solve this by instead 
maximizing the average classifier output on positive samples.

• Unfortunately, it still suffers from the second problem…
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The MACE filter suffers from 2 issues:

• Enforcing a sharp peak is also a too strong condition; overfits.

• This led to the development of GaussianMACE / MSEMACE, 
which encourages the peak to follow a nice 2D Gaussian shape:

Historical Perspective

subject	to:		��� = 1

20

min
�
	 �⊛�− � �,        � =

• In the original papers (1990’s), the minimization was still
subject to the MACE hard constraint:  ��� = 1 .
(It later turned out to be unnecessary!)

1.0

0.0



Sharp vs. Gaussian peaks

� =

Naïve filter
(� = �)

Classifier
(�)

Output
(� ∗ �)

Training image:

• Very broad peak is hard to localize 
(especially with clutter).

• Stateoftheart classifiers (e.g. SVM) 
show same behavior!
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Sharp vs. Gaussian peaks

� =

Naïve filter
(� = �)

Sharp peak
(UMACE)

Classifier
(�)

Output
(� ∗ �)

Training image:

• A very sharp peak is 
obtained by emphasizing 
small image details
(like the fish’s scales here).

• Unfortunately, this classifier generalizes poorly:
If the details are not exactly the same, the output is 0.
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Sharp vs. Gaussian peaks

� =

Naïve filter
(� = �)

Sharp peak
(UMACE)

Gaussian peak
(GMACE)

Classifier
(�)

Output
(� ∗ �)

Training image:

• A Gaussian peak is a good compromise.
• Tiny details are ignored.
• Instead, the classifier focuses on larger, more robust structures. 23
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In their CVPR 2010 paper, David Bolme and colleagues
brought these techniques back to the spotlight.

• They presented a tracker that:

• Processed videos at over
600 framespersecond (!)

• Was very simple to implement
• No features.
• Only FFT and elementwise

operations on raw pixels.

• Despite this fact, it performed similarly to
the most sophisticated trackers of the time.

Min. Output Sum of Sq. Errors (MOSSE)

24



How did they do it?

• They focused on just the “Gaussian peak” objective (no constraints):

Min. Output Sum of Sq. Errors (MOSSE)
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How did they do it?

• They focused on just the “Gaussian peak” objective (no constraints):

• Found the following solution using the Convolution Theorem:

(� = 10�� is added to prevent divisions by 0)

�� =
��∗ × ��

��∗ × �� + �

No expensive matrix operations! ⇒ Only FFT and elementwise.

Min. Output Sum of Sq. Errors (MOSSE)
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Min. Output Sum of Sq. Errors (MOSSE)
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Practical aspects:

• Cosine (or sine) window

× ⇒

• Smoothly interpolates image with a constant value at the edges.

• The filter sees an image that is “cyclic”:
no discontinuity between edges (e.g. top and bottom).

• Bonus: gives more importance to the target center.

�′�� = (��� − 0.5) sin(��/�) sin(��/�) where � is � × �



Min. Output Sum of Sq. Errors (MOSSE)
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Practical aspects:

• Simple update

• � is the learning rate (higher → faster adaptation).

• This gives the tracker some memory.

• A variant is to update the numerator and denominator separately.

����� =
��∗ × ��

��∗ × �� + �

��� = 1 − � ����� + ������

• Train a MOSSE filter �����
using the new image ��.

• Update previous solution �����
with ����� by linear interpolation.



Min. Output Sum of Sq. Errors (MOSSE)
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Practical aspects:

• Scale adaptation

• Extract patches from BB’s with 3 scales, resize them to the same size.
• Run detection, use BB with the highest detection score.
• Can also be adapted for rotation, and other transformations.

× 1.1

× 1.0

× 0.9

Input image Detection outputScale



Why does the MOSSE filter work so well in practice?
→ We need tools to connect correlation filters with machine learning.

• Consider the original minimization:

Circulant matrices

min
�
	 �⊛�− � �
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Why does the MOSSE filter work so well in practice?
→ We need tools to connect correlation filters with machine learning.

• Consider the original minimization:

• We can replace the correlation
with a special matrix �(�):

• �(�) is a circulant matrix:

min
�
	 �(�)� − � �

Circulant matrices

min
�
	 �⊛�− � �
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• We can see X = �(�) as a dataset with cyclically shifted versions of �:

Circulant matrices

� = 	

��� �

��� �

⋮
����� �

	

��� ��� ���

• � is a permutation matrix that
shifts the pixels down 1 element.

• Arbitrary shift � obtained with power ���.
• Cyclic:  ��� = ��� = �.

�����⋯
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• Circulant matrices have many nice properties.

Circulant matrices

� = 	

��� �

��� �

⋮
����� �

	 ℱ � =

��� 0 ⋯ 0
0 ��� ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ���

Data matrix is 
circulant ⇒

Becomes diagonal in 
Fourier domain

• Similar role to the Convolution Theorem.
• Most of the “data” is 0 and can be ignored! ⇒ Massive speedup

33



• Closedform solution:  � = ��� + �� �����

Circulant matrices

Back to our question:
Why does the MOSSE filter work so well in practice?

• Consider a simple Ridge Regression (RR) problem:

min
�
	 �� − � � + � � � RR = Leastsquares with 

regularization (avoids overfitting!)
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• Closedform solution:  � = ��� + �� �����

• Now replace X = �(�) (circulant data), and � = �	 (Gaussian targets).
• Diagonalizing the involved circulant matrices with the DFT yields:
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• Closedform solution:  � = ��� + �� �����

• Now replace X = �(�) (circulant data), and � = �	 (Gaussian targets).
• Diagonalizing the involved circulant matrices with the DFT yields:

Circulant matrices

Back to our question:
Why does the MOSSE filter work so well in practice?

• Consider a simple Ridge Regression (RR) problem:

min
�
	 �� − � � + � � � RR = Leastsquares with 

regularization (avoids overfitting!)

�� =
��∗ × ��

��∗ × �� + �
⇒

• Which is exactly the MOSSE solution!
• So MOSSE is equivalent to a good 
learning algorithm (RR) with lots of 
data (circulant/shifted samples).
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Kernelized Correlation Filters

• Circulant matrices are a very general tool, replacing
standard operations with fast Fourier operations.

• For example, we can apply the same idea to Kernel Ridge Regression:

� = � + �� ��� (� kernel matrix)

• For many kernels, circulant data ⇒ circulant �:

�� =
��

�� + �

� = �(�), where �	is the first row of �
(small, and easy to compute)

• Diagonalizing with the DFT yields: 

Fast solution in � � log � .
Typical kernel algorithms are
� �� or higher!

⇒
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KCF – Qualitative results

Kernelized Correlation Filter (KCF) TLD Struck

38

• Opensource (ported to Matlab/Python/Java/C)

• ~	300 FPS

• Code base for top 3 trackers in VOT 2014.

KCF
Tracker



KCF – VOT 2014 Results

• Opensource (ported to Matlab/Python/Java/C)

• ~	300 FPS

• Code base for top 3 trackers in VOT 2014. 39

KCF
Tracker

KCF
SAMF
DSST



KCF – Source code

• Very few hyperparameters.
• Fits on the back of a postcard,

native Matlab functions. 40

function alphaf = train(x, y, sigma, lambda)
k = kernel_correlation(x, x, sigma);
alphaf = fft2(y) ./ (fft2(k) + lambda);

end

function y = detect(alphaf, x, z, sigma)
k = kernel_correlation(z, x, sigma);
y = real(ifft2(alphaf .* fft2(k)));

end

function k = kernel_correlation(x1, x2, sigma)
c = ifft2(sum(conj(fft2(x1)) .* fft2(x2), 3));
d = x1(:)'*x1(:) + x2(:)'*x2(:) - 2 * c;
k = exp(-1 / sigma^2 * abs(d) / numel(d));

end

Training and detection (Matlab)

KCF
Tracker



Practical considerations

Filter size

Im
ag

e 
siz

e

• As a rule of thumb, similarly sized crosscorrelation arguments
(e.g. image and filter) take the best advantage of the FFT.

• Consider a � × � image and a � × � filter.
• FFT complexity is �(�� log �) (independent of �, big or small!).
• Crosscorrelation complexity is �(����) (better when � ≪ �).
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Practical considerations

• When performing FFTs, the “classic advice” is to set the image 
size to a poweroftwo if possible:

size(�) = 2� × 2�,  with integer �, �.

• While this theoretically achieves the best speed, modern FFT 
libraries (such as FFTW) are optimized for arbitrary sizes.

• Rounding the size up to the next poweroftwo has 2 drawbacks:

• A mismatched size can degrade recognition performance
(e.g. by including unnecessary background regions in a filter).

• If the next poweroftwo is significantly larger, we can end up 
with actually slower FFTs!
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Other topics

Topics not covered here:

• Considering multiple samples
and features simultaneously.

• Circulant trick for other algorithms
(Support Vector Regression, etc).

ICCV’13 (example detections)

• Generalizing shifts to other 
transformations (rotations, etc).

• Fast training of classifier 
ensemble (pose estimator).

NIPS’14 (example pose estimates)
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