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Why adding Thermal Image Modality? 2
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Applications of TIR Tracking Challenges

• Scientific research

• Security

• Fire monitoring

• Search and rescue

• Automotive safety

• Personal use

• RGB and TIR - Calibration and 
registration

• Understanding the similarities and 
complementaries (VOT-TIR)

● Fusion / cross modality (VOT-RGBT)
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Why a separate challenge?

Tracking in TIR different from tracking in low resolution 
grayscale visual?

Many similarities but also interesting differences

• 16-bit

• Constant values if radiometric

• Less structure/edges/texture

• No shadows

• Noise: blooming, resolution, dead pixels
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VOT-TIR: Linköping Thermal InfraRed (LTIR) dataset

A. Berg, 
J. Ahlberg, 
M. Felsberg, 
A Thermal 
Object 
Tracking 
Benchmark. 
AVSS 2015.
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VOT2016 vs VOT-TIR2016
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Properties TIR

• 25 Sequences

• Average sequence length 740

• Annotations in accordance with VOT

– Bounding-box

– 11 global attributes (per-sequence)

– 6 local attributes (per-frame)

Occlusion, dynamics change, motion change, 
size change,  camera motion, neutral

Blur, dynamics change, temperature change, 
object motion, size change,  camera motion, 
background clutter, aspect ratio change, object
deformation, scene complexity, neutral
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RGBT-dataset
● RGBT234-dataset from: C. Li, X. Liang, Y. 

Lu, N. Zhao, and J. Tang. RGB-T object 
tracking: Benchmark and baseline. 
Pattern Recognition (96), 2019

● 234 sequences with an average length 
of 335 frames

● Same clustering in 11-dim attribute 
space, but now 60 sequences

● Local attribute illumination/dynamics 
change not used

● Original axis-aligend annotation has 
been replaced with new rotated bboxes

Issues
● Spatial accuracy (addressed by re-annotation)

● Synchronization (considered part of challenge)
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Semi-automatic (re-)annotation
● Procedure described in: A. Berg, J. Johnander, F. D. de Gevigney, J. 

Ahlberg, and M. Felsberg. Semi-automatic annotation of objects in visual-
thermal video. In VOT2019.

– Step 1: semi-automatic video segmentation based on: J. Johnander, M. Danelljan, E. 
Brissman, F. S. Khan, and M. Felsberg. A generative appearance model for end-to-end video 
object segmentation. In CVPR, 2019.

– Step 2: bounding box determination: T. Vojir and J. Matas. Pixel-wise object segmentations 
for the VOT 2016 dataset. Research Report CTU–CMP–2017–01, Czech Technical University, 
Prague, January 2017.
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Detect failures based on forward-backward consistency
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Results

• Enabling technique for realizing VOT-RGBT 2019.

• We estimated a 78% reduction in workload compared to full 
manual annotation of the VOT-RGBT 2019 dataset.

• Synchronization issue: TIR is used as reference

• Spatial accuracy: EAO RGB-TIR 0.75

13



Challenge Winner Protocol

• Evaluation is performed similar to VOT-ST 2020

– Initialization points (anchors) are used

– rotated bounding boxes had to be used (due to issues with 
sync and calibration)

• Top-ranked trackers on the public dataset run by the 
committee on the sequestered dataset

• Top-ranked tracker on the sequestered dataset is the winner
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Submitted tracker

● 7 trackers in total, 5 submissions 
with code, 2 by committee 
(mfDiMP and SiamDW-T)

– 2 ST1, 3 ST0

– All 5 uniform dynamic model

– All 5 based on discriminative model and 
holistic representation

– 4 single-stage based on DCFs: 
M2C2Frgbt, JMMAC, AMF, SNDCFT

– 1 multi-stage based on Siamese 
network: DFAT

– 1 makes use of subspace methods and 
hand-crafted features: M2C2Frgbt

– 4 make use of deep features, 2 of them 
train the backbone: AMF and DFAT

– 1 makes use of ransac: JMMAC

15



Results on 
public dataset

● All top-5 trackers use 
CNN features

● 3 out of these 5 trackers 
use DCFs

● 2 use Siamese networks
● #2 and #3 do backbone 

training
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Example: AMF on man9



Further results

● EAO is stronger 
correlated to 
robustness than 
accuracy

● Robustness is most 
challenging for 
occlusion

● Changed order
for sequestered
dataset
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VOT-RGBT2020 Winners

Winners of the VOT-RGBT 2020 challenge:

... by: H. Li, Z. Tang, T. Xu, X. Zhu, X. 
Wu, J. Kittler

“ Decision Fusion Adaptive Tracker (DFAT)” 

(The talk in the next live session!)
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Summary

● CNN-features dominating

● The ranking changes on sequestered dataset

● Overall performance decreases slightly on sequestered dataset

● Robustness most important

● Occlusion largest challenge

● For the future:

– Attract more participants

– Mittigate the effect of spatial missalignment and synchronization errors so that we can switch to 
segmentation-based evaluation
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• The VOT2020 committee

• Everyone who participated or contributed

• VOT2020 sponsor:

Thanks

M. Kristan J. Matas A. Leonardis M. Felsberg L. ČehovinM. DanelljanR. Pflugfelder A. Lukežič

O. Drbohlav

J. K. Kamarainen

H. Linbo Y. Song Y. Jinyu Z. Yushan G. Bhat
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