







### Discriminative Correlation Filter with Channel and Spatial Reliability (CSR-DCF)

#### Alan Lukežič<sup>1,</sup> Andrej Muhič<sup>1</sup>, Tomáš Vojíř<sup>2</sup>, Luka Čehovin<sup>1</sup>, Jiří Matas<sup>2</sup>, Matej Kristan<sup>1</sup>

Faculty of Computer and Information Science, University of Ljubljana, Slovenia
Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic



https://github.com/alanlukezic/csr-dcf

# **Single-Channel CFs: Filter Learning**



$$\begin{split} \arg\min_{\tilde{\mathbf{H}}} |\mathbf{P} * \tilde{\mathbf{H}} - \mathbf{G}|^2 &= \arg\min_{\hat{\mathbf{H}}^{\dagger}} |\hat{\mathbf{P}} \odot \hat{\mathbf{H}}^{\dagger} - \hat{\mathbf{G}}|^2 \\ \\ \text{Closed-form solution: } \hat{\mathbf{H}}^{\dagger} &= \frac{\hat{\mathbf{G}} \odot \hat{\mathbf{P}}^{\dagger}}{\hat{\mathbf{P}} \odot \hat{\mathbf{P}}^{\dagger}} \end{split}$$

the hat symbol ( ) denotes the Fourier domain image green bbox: target region, red bbox: search region

# **Single-Channel CFs: Target Localization**





Localization patch: P





Filter: H

Correlation response: R

Position from previous frame

Efficiently in Fourier domain:  $\mathbf{R} = \mathcal{F}^{-1}(\mathbf{\hat{P}} \odot \mathbf{\hat{H}}^{\dagger})$ 

Position of the maximum: new target location

# **Issues With Standard CFs: Search Region**

# Filter learned from cyclic shifts

#### Search region size equal to template

#### Poor approximation with bbox













Background enters filter

Unrealistic training examples

Difficult to address large displacements

# **Contribution 1: Spatial Relibility Map**

• Assume an approximate binary target segmentation M

Spatial reliability map M

Learned filter



[1] Boyd et al., Distributed optimization and statistical learning via the alternating direction method of multipliers, FTML 2011

# **Computing Spatial Reliability Map**

#### Color likelihood



[1] Kristan et al., Fast image-based obstacle detection from unmanned surface vehicles, TCyB, 2015

# **Multiple-Channel Correlation Filters**

- Multiple channel representations
  - HoG (31 D), ColorNames (10 D), CNN (~100-1000 D)
- Combined by averaging



### **Contribution 2: Channel Reliability**

- Estimation in training step
- Observation: channel discriminativity is reflected in height of the response peak



### **CSR-DCF Tracking Iteration**



#### **Results: Expected Average Overlap**



[1] A. Lukežič, T. Vojíř, L. Z. Čehovin, J. Matas, M. Kristan. Discriminative Correlation Filter with Channel and Spatial Reliability, CVPR 2017

#### Visual Attribute Analysis (VOT2016)

Visual attributes:

- Camera motion
- Illumination change
- Occlusion
- Size change
- Motion change



# **Results on VOT 17: Baseline vs. Realtime**

|           | Baseline |              |              | Real time |              |              |     |
|-----------|----------|--------------|--------------|-----------|--------------|--------------|-----|
| Tracker   | EAO      | $A_{\rm av}$ | $R_{\rm av}$ | EAO       | $A_{\rm av}$ | $R_{\rm av}$ | fps |
| CSR-DCF   | 0.256    | 0.49         | 1.27         | 0.099     | 0.48         | 3.75         | 13  |
| CSR-DCFf  | 0.227    | 0.48         | 1.37         | 0.158     | 0.48         | 2.30         | 20  |
| CSR-DCF++ | 0.229    | 0.45         | 1.32         | 0.212     | 0.46         | 1.42         | 27  |

- Matlab version (CSR-DCF) fast, but a lot of overhead
  - Image resize, calling mex functions (HoG, segmentation)
- Optimized Matlab version (CSR-DCFf) faster, but still performance drop
- C++ version (CSR-DCF++): real-time speed
  - Almost the same tracking performance

### **Results on VOT 17: Baseline vs. Realtime**



# **Tracking Speed: C++**

- Average speed on VOT 2016: 27 FPS
  - Desktop PC: CPU Intel i7 (3.40 GHz), 16 GB RAM
  - No GPU needed



### Conclusion

- CSR-DCF contributions in DCF:
  - Target modeling and a method for filter learning with spatial reliability map
  - Introducing channel reliability
- State-of-the-art results on the recent benchmarks
- Real-time tracking performance C++ (approx. 2-times faster than Matlab verstion)
- Planning to publish it open source (in OpenCV contrib module)

### **Qualitative evaluation**



#### Tracking result

Channel reliability weights

# Thank you!



CVPR paper: A. Lukežič, T. Vojíř, L. Z. Čehovin, J. Matas, M. Kristan. Discriminative Correlation Filter with Channel and Spatial Reliability

Matlab source: () https://github.com/alanlukezic/csr-dcf

28.10.2017 ICCV Venice