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Tracking of single, arbitrary objects
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Problem. Track an arbitrary object with the sole input of a
single bounding box in the first frame of the video.

Challenge: we need to be class-agnostic.




Tracking-by-detection paradigm
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frame t TRAINING frame t+7  TESTING frame t+7  TESTING

e Learnonline a binary classifier (+ is object, - is background).

e Re-detect the object at every frame + update the classifier
o  Online training and testing.
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What about the deep learning frenzy?

OXFORD

e Intracking community, deep-nets took more time to become
mainstream.

o CVPR’15 - not a single tracker was using deep-nets as a core component

and not even deep features.
o CVPR’16-50% were.

e Sometimes better performance than legacy features, but ...
e Training on benchmarks — controversial.
e Slow

Shared Domain-specific
Layers Layers

fo6l

input conv: conv. conv3 fc4 fc5
3@107x107 96@51x51 256@11x11 512@3x3 512 512

Learning Multi-Domain Convolutional Neural Networks for Visual Tracking - Hyeonseob Nam and Bohyung Han - CVPR 2016.
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Conv-nets for arbitrary object tracking, with three constraints.

1. Real-time.
2. No benchmark videos for training.

3. Simple.
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Vanilla siamese conv-net
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e Trains amodel to address a similarity learning problem.
e Function compares an exemplar z to a candidate of the same size x'.

e Output score tell us how similar are the two image patches.
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Our architecture
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Our network is fully convolutional.

layer
o smaller (exemplar / target-object). TR
o bigger (search area). |

. . .  E— —> Cross-correlation
e Two inputs of different sizes: “ L
6x6x128

17x17x1
e Cross-correlation layer: computes the ~ § /
similarity at all translated sub-windows L B ’

on adense grid in a single evaluation.

Xz
255x255x3

22x22x128

e Output is ascore map.

Forward pass: >100Hz

CODE AVAILABLE! www . robots.ox.ac.uk/~luca/siamese-fc.html



http://www.robots.ox.ac.uk/~luca/siamese-fc.html

ILSVRC15-VID (ImageNet Video)
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e Sofar tracking community could not rely on large labelled dataset.
o ALOV+OTB+VOT in total have less than 600 video, with some overlap.

o Not all labelled per frame.

e ImageNet Video

o Official task is object detection from video - can be easily adapted to arbitrary object tracking.
o  Almost 4,500 videos and 1,200,000 bounding boxes!
o 30 classes: mostly animals (~75%) and some vehicles (~25%)
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CODE AVAILABLE! www . robots.ox.ac.uk/~luca/siamese-fc.html



http://www.robots.ox.ac.uk/~luca/siamese-fc.html
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e Dataset build by extracting two patches with different amount of context for every
labelled object. Then resized to 127x127 and 255x255.

e Pick random video and random pair of frames within the video (max N frames apart).
o N controls the “difficulty” of the problem.

e Mean of logistic loss over all positions,

{(y,v) = log(1 + exp(—yv))

CODE AVAILABLE! www . robots.ox.ac.uk/~luca/siamese-fc.html


http://www.robots.ox.ac.uk/~luca/siamese-fc.html

Tracking pipeline
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e Activations for the exemplar z only

computed for first frame. Computed only oncel!

|
e Subwindow of x with max similarity sets ‘—: |
the new location. 2, z > P > i
©1
e That’s (almost) it! “LUmERmE . Glﬁ'ﬁls_N " .
o Noupdate of target representation. | .
o Nobboxregression. L
o Nofine-tuning — fast! o = 7] .
E L b
e Onlythree little tricks: ll
o  Pyramid of 3 scales. 22x22x128

o Response upsamped with bi-cubic S

interpolation.
o Cosine window to penalize large
displacements.

CODE AVAILABLE! www . robots.ox.ac.uk/~luca/siamese-fc.html



http://www.robots.ox.ac.uk/~luca/siamese-fc.html

New state-of-the art for real-time trackers (otB-13) ..~
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State-of-the-art for general trackers (vot-15)
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Results reflect training dataset bias

Success plots of OPE - out of view (6)
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Success plots of OPE - low resolution (4)
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Concurrent work - GOTURN [eccv-1¢]
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e Siamese architecture trained to solve Bounding
Box regression problems.

Current frame Conv Layers
Search Region

e Differently, network is not fully convolutional.

Fully-Connected
Layers

e Trained from consecutive frames.

e They are not strictly learning a similarity function
- method works (albeit worse) also with a single
branch.

iyt 7~ Predicted location
of target
within search region

: What to track
Previous frame Conv Layers

e Fast (100fps), but much lower results compared
to our method (only VOT-14 available).

Learning to Track at 100 FPS with Deep Regression Networks - David Held, Sebastian Thrun, Silvio Savarese - ECCV 2016.




Concurrent work - SINT [cver16]

e Siamese architecture trained to learn a generic
similarity function.

e Differently, their network is not fully
convolutional and they recur instead to ROI
pooling to sample candidates.

e Results reported only on OTB-13: relative +2%
better than our method.

e BBoxregressiontoimprove tracking
performance.

e Muchslower: only 2 fps vs 85 fps of our method.
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Siamese Instance Search for Tracking - Ran Tao, Efstratios Gavves, Arnold W.M. Smeulders - CVPR 2016.
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TSearch stream
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http://www.youtube.com/watch?v=zS6kiI8DgDY
http://www.youtube.com/watch?v=B_hypDVQwPY
http://www.youtube.com/watch?v=AWNjguzyxuk
http://www.youtube.com/watch?v=KP8DIHDxJ5Q

Conclusions
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e |mageNet Video: new standard for training tracking algorithms?

e Fully-convolutional siamese:
o Generalizes well (trained on ImageNet Video).
o allows very high frame-rates, still achieving state-of-the-art performance.
o Simple+efficient building block for future work.

— Code available: WWW.robots.ox.ac.uk/~luca/siamese-fc.html
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