Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

Hyeonseob Nam Bohyung Han

Computer Vision Lab. Dept. Computer Science and Engineering

POSTECH

Our VOT2015 Submission

<Average over all sequences> Accuracy = 0.60, Failures = 0.77

<soldier>
Accuracy=0.51, Failures=0.07

<sphere>
Accuracy=0.74, Failures=0.00

<octopus> Accuracy=0.62, Failures=0.00

<godfather>
Accuracy=0.52, Failures=0.13

Ground-truth

Our 15 repetitions

<wiper>
Accuracy=0.69, Failures=0.13

POSTECH

A Deep Convolutional Neural Network trained on large amounts of visual tracking data

Convolutional Neural Networks (CNNs)

• Image Classification

[Krizhevsky et al. NIPS'12] [Szegedy et al. CVPR'15] [Simonyan et al. ICLR'15]

• Object Detection

•••

• • •

• • •

[Sermanet et al. ICLR'14] [Girshick et al. CVPR'14] [He et al. ECCV'14]

• Semantic Segmentation

[Chen et al. ICLR'15] [Long et al. CVPR'15] [Noh et al. ICCV'15]

• Face Recognition, Image Captioning, Question Answering, ...

Top-Performing Trackers from VOT2014

Low-Level Features

Tracker	Features	Scale	Visual model
DSST*	HoG+intensity	Yes	Discr. correl. Filtr
SAMF	HoG+colornames	Yes	Discr. correl. Filtr
KCF	HoG	Yes	Discr. correl. Filtr
DGT	Superpixels + color	Yes	Part-based
PLT ₁₄	Color, intensity, derivs.	Yes	Discr. Regression
PLT ₁₃	Color, intensity, derivs.	No	Discr. Regression

[Kristan et al. ECCVW'14]

Deep Learning for Visual Tracking

 100×100

2

stride

- Stacked Denoising Autoencoder [Wang et al. NIPS'13]
- Pool of CNNs [Li et al. BMVC'14]
- CNN + Online SVM [Hong et al. ICML'15]
- Structured output CNN [Wang et al. Arxiv'15]

Figure 2. Architecture of the proposed structured output CNN.

Deep Learning for Visual Tracking

- Stacked Denoising Autoencoder [Wang et al. NIPS'13]
 - Pool of CNNs
 Li et a
 Defeated by low-level feature based methods
 MUSTer (HOG, color, SIFT) [Hong et al. CVPR'15]
 CNN LCT (HOG, intensity) [Ma et al. CVPR'15]

• Structured output CNN [Wang et al. Arxiv'15]

[Hong

× 00 · · · 00

0...0

Figure 2. Architecture of the proposed structured output CNN.

Issues with CNNs for Visual Tracking

• Lack of training data

Large-scale classification dataset

Pretrain using ImageNet?

[Hong et al. ICML'15] [Wang et al. Arxiv'15]

Goal

• Exploit external tracking data to train CNN features for tracking!

Challenge

• Inconsistent training data across tracking sequences (domains).

Challenge

• Inconsistent training data across tracking sequences (domains).

Our Approach

• Training shared features and domain-specific classifiers jointly.

Our Approach

• Training shared features and domain-specific classifiers jointly.

MDNet: Multi-Domain Network

• Train the network for each domain iteratively.

• Iteration #nK+1

• Iteration #nK+2

• Iteration #nK

Online Tracking using MDNet Features

Online Tracking using MDNet Features

Online Tracking: Overview

Repeat for the next frame

Online Network Updates

Long-Term Updates

- performed at regular intervals
- using long-term training samples
- For Robustness

• Short-Term Updates

- performed at abrupt appearance changes ($f^+(\mathbf{x}^*) < 0.5$)
- using short-term training samples
- For Adaptiveness

Short-term updates

POSTECH

Long-term updates

Hard Negative Mining

• Provide a "hard" minibatch in each training iteration.

Hard Negative Mining

Training iteration

Bounding Box Regression

- Improve the localization quality.
 - DPM [Felzenszwalb et al. PAMI'10]
 - R-CNN [Girshick et al. CVPR'14]

Frame 1

Train a bounding box regression model.

 $\bullet \bullet \bullet$

Frame $t \ge 2$

 $\bullet \bullet \bullet$

Adjust the tracking result by bounding box regression.

Experimental Results

- Result on VOT2014 [Kristan et al. ECCVW'14]
- Result on OTB50 [Wu et al. CVPR'13]
- Result on OTB100 [Wu et al. PAMI'15]
- Component Analysis

Result on VOT2014 [Kristan et al. ECCVW'14]

- MDNet is trained with 89 sequences from {OTB100} excluding {VOT2014}
- Accuracy and robustness by baseline and region-noise experiments

(a) Baseline result

(b) Region_noise result

Qualitative Results on VOT2014 (w/o re-initialization)

POSTECH

28

Result on OTB50 [Wu et al. CVPR'13]

- MDNet is trained with 58 sequences from {VOT'13,'14,'15} excluding {OTB100}
- Distance precision and overlap success rate by One-Pass-Evaluation (OPE)

Result on OTB100 [Wu et al. TPAMI'15]

- MDNet is trained with 58 sequences from {VOT'13,'14,'15} excluding {OTB100}
- Distance precision and overlap success rate by One-Pass-Evaluation (OPE)

Qualitative Results on OTB100

MDNet (Ours)

MEEM

CNN-SVM

Component Analysis (OTB100)

- Our method (MDNet) is compared with
 - **SDNet**: pretrained by a single-domain network
 - **MDNet-BB**: MDNet w/o bounding box regression
 - **MDNet-BB-HM**: MDNet w/o bounding box regression & hard minibatch mining

Summary

- MDNet for learning generic features for visual tracking
- Online tracking algorithm by transferring MDNet features
 - Complementary network update
 - Hard negative mining
 - Bounding box regression
- Outstanding Performance in VOT2014, OTB50 and OTB100
- The Best Submitted Tracker on VOT2015 Challenge!

For More Details...

• Please refer to our arXiv paper.

arXiv.org > cs > arXiv:1510.07945	r Article-id (<u>Help</u> <u>Advanced search</u>) All papers ▼ Go!
Computer Science > Computer Vision and Pattern Recognition	Download:
Learning Multi-Domain Convolutional Neural Networks for Visua Tracking	 PDF Other formats (license)
Hyeonseob Nam, Bohyung Han (Submitted on 27 Oct 2015)	Current browse context: cs.CV
We propose a novel visual tracking algorithm based on the representations from a discriminatively trained Convolutional Neural Network (CNN). Our algorithm pretrains a CNN using a large set of videos with tracking gro truths to obtain a generic target representation. Our network is composed of shared layers and multiple branches	<pre>c prev next > new recent 1510 und- Change to browse by: s of cs</pre>
for binary classification to identify target in each domain. We train each domain in the network iteratively to obtair generic target representations in the shared layers. When tracking a target in a new sequence, we construct a network iteratively to obtain	References & Citations • NASA ADS
network by combining the shared layers in the pretrained CNN with a new binary classification layer, which is upd online. Online tracking is performed by evaluating the candidate windows randomly sampled around the previous target state. The proposed algorithm illustrates outstanding performance in existing tracking benchmarks.	lated DBLP - CS Bibliography isting bibtex Hyeonseob Nam Bohyung Han
Subjects: Computer Vision and Pattern Recognition (cs.CV) Cite as: arXiv:1510.07945 [cs.CV] (or arXiv:1510.07945v1 [cs.CV] for this version)	Bookmark (what is this?)
Submission history	

From: Hyeonseob Nam [view email] [v1] Tue, 27 Oct 2015 15:53:00 GMT (3024kb,D)

- Code and results will be uploaded soon.
 - http://cvlab.postech.ac.kr

_