

Multi-Template Scale-Adaptive Kernelized Correlation Filters Adel Bibi, Bernard Ghanem King Abdullah University of Science and Technology (KAUST)

21

S

Solution

4.02

Abstract

- We identify the major drawbacks of a very computationally efficient and state-of-art-tracker known as the Kernelized Correlation Filter (KCF), which uses a fixed scale and a heuristic update strategy of the filter taps.
- We show that we can use multiple templates for the filter tap update along with non-linear kernel and multidimensional features in a joint fixed-point optimization by exploiting the underlying circulant structure.

 Our proposed method addresses the fixed-scale drawback by computing the MAP scale estimate over multiple scales rather simply using ML scale estimate.

Motivation

KCF_Lin_Gray

Motivated by the superior performance of KCF using multiple templates, which is sometimes even more prominent than using non-linear kernels, we re-formulate the filter update rule to incorporate previous templates and multi dimensional features in non-linear kernel spaces in one framework that uses fixed-point optimization. These two ideas were claimed to be infeasible when they are applied jointly.

Tracker	Acc. Rank	Rob. Rank	Rank	
KCF_Gauss_HOG	3.23	2.83	3.03	
KCF_Lin_HOG	3.35	2.79	3.07	
KCF_Lin_Gray_Multi	3.41	3.20	3.30	
KCF_Gauss_Gray	3.79	3.00	3.39	

4.04

Problem Formulation

Multiple Templates: We aim to solve the filter update problem by incorporating previous templates. The model below is for two templates but can easily be extended to any number of templates.

 $\hat{\mathbf{a}}_1 = \frac{\tau}{\hat{\mathbf{k}}^{x_1 x_1} + (\lambda + \mu)}$ $\hat{\psi} = \mathbf{F}(-(k\mathbf{I} + (\lambda k + \mu(k-1))(\Phi_1 \Phi_1^T)^{-1})\tilde{\mathbf{b}} + \mathbf{y})$ $\tilde{\mathbf{b}} = \mathbf{F}(\hat{k}^{x_2x_1} \odot \mathbf{\hat{a}}_2^*)$ $(\Phi_1 \Phi_1^T)^{-1} \mathbf{\tilde{b}} = \mathbf{F}((\hat{k}^{x_1 x_1})^{-1} \odot \hat{k}^{x_2 x_1} \odot \mathbf{\hat{a}}_2^*)$

3.99

Scale Integration: We perform max-pooling on the aposterior distribution which allows a smoother scale change transition across consecutive frames.

$$\max_{i} P(s_i | \mathbf{y}) = P(\mathbf{y} | s_i) P(s_i)$$

Experiments

0.8

Qualitative results:

Quantitative Comparison on VOT2014/2015 Datasets: We compare our method against state-of-art trackers on VOT2014 and different versions of our tracker on VOT2015.

	Tracker	Acc. Rank	Rob. Rank	Rank	FPS					
	KCF+MT+Sc (ours)	2.68	2.96	2.82	25.1					
	KCF_Scale	3.00	3.48	3.24	47.42	VO.				
	KCF	3.46	3.13	3.29	66.5	T 2(
	Struck	3.68	3.85	3.75	19.77	014				
	MIL	5.02	3.88	4.45	1.94					
	IVT	5.00	4.65	4.81	27.51					
	NCC	5.21	6.08	5.65	27.9					
	KCF+MT+Sc (ours)	1.80	1.95	1.88	24.3	VOT				
	KCF+MT	2.04	2.04	2.04	31.54	20,				
	KCF	2.16	2.01	2.08	44.76	1 ບັ				
-OursKCF										

References:

J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Highspeed tracking with kernelized correlation filters. PAMI 2015.

M. Danelljan, G. H[¨]ager, F. Khan, and M. Felsberg. Accurate scale estimation for robust visual tracking. BMVC 2014.

Acknowledgements. Research reported was supported by competitive funding from KAUST.