DISCRIMINATIVE OBJECT TRACKING WITH SCALE RATIO ADAPTATION

Hyemin Lee, Daijin Kim

Intelligent Media Lab., Dept. of CSE, Pohang University of Science and Technology (POSTECH), South Korea

Proposed process

More accurate, robust With little speed degradation (37 fps -> 34 fps)

Input:

Image I_t. Previous target position p_{t-1} and scale s_{t-1} Discriminant function F_{t-1} Momentum vector m_{t-1}

Output :

Estimated target position p_t and scale s_t . Updated discriminant function F_t Updated momentum vector m_t

Proposed process

Estimate location:

- 1. Extract samples z_{trans} from I_t at p_{t-1} and s_{t-1} .
- 2. Compute the responsibility y_{trans} using discriminant function F_{t-1}
- 3. Apply Gaussian kernel on the y_{trans} to reflect the momentum factor m_{t-1}
- 4. Set p_t to the target position that maximizes y_{trans}
- 5. Update the momentum factor m_t with exponential learning rate.

Proposed process

Estimate Scale factor:

- 1. Extract scale samples z_{scale} from I_t at p_t and s_{t-1} .
- 2. Compute the responsibility y_{scale} using discriminant function F_{t-1}
- 3. Set s_t to the target scale that maximizes y_{scale}
- 4. Adjust s_t if the scale ratio exceed some limit with respect to initial scale.

Proposed process

Compensate Center-error:

- 1. Extract samples z_{comp} from I_t at p_t and s_t within center-boundary caused by scale change.
- 2. Compute the responsibility y_{comp} using discriminant function F_{t-1}
- 3. Set p_t to the target position that maximize $y_{comp.}$

Proposed process

Normalize scaled model:

- 1. Extract training samples a_{trans} from I_t at p_t and updated s_t
- 2. Update discriminant function F_t
- 3. Adjust the size of support vector budget if it exceed the limit.

Integration Issue with detector

Input Frame

Live Demo

Live Demo

